
D
ow

nloaded by [H
acettepe U

niversity 85.240.126.137] at [05/04/16]. C
opyright ©

 M
cG

raw
-H

ill G
lobal E

ducation H
oldings, L

L
C

. N
ot to be redistributed or m

odified in any w
ay w

ithout perm
ission.

www.allitebooks.com

http://www.allitebooks.org

®

Oracle Fusion Applications
Development and
Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 1 11/12/13 3:50 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

About the Authors
Vladimir Ajvaz is an Oracle expert and has been working with the Oracle E-Business
Suite and, more recently, Oracle Fusion Applications for the past 15+ years. He
worked at Oracle Corporation for many years, and was fortunate enough to work on
some of Oracle’s best teams across the globe where he gained in-depth knowledge of
Oracle technologies. The practical experiences from numerous projects in a wide
range of industries inspired Vladimir to coauthor Oracle E-Business Suite Development
& Extensibility Handbook, which was his first book published by McGraw-Hill
Education (Oracle Press). Today, he provides independent advice and consulting
services to companies around the globe but also inspires and participates in the
development of new enterprise-class products and services.

Anil Passi is an Oracle ACE, with implementation experience across various Oracle
products that include Fusion Applications, Financial Accounting Hub, planning and
modeling tools, Identity & Access Governance, and OFSAA. He is an independent
IT advisor to various financial services organizations in Europe. Anil is also a cofounder
of iTouchVision, a company specializing in public-facing multichannel SaaS CRM
products. In addition, he cofounded a company named Focusthread that gives online
trainings across various Oracle products.

Dhaval Mehta is a Group Development Manager for Fusion Applications in Oracle
Corporation. Previously Dhaval worked on Oracle E-Business Suite applications
development within Oracle Corporation. Dhaval has worked on building Oracle
Sales Cloud applications from their inception to current releases.

About the Technical Editor
Gustavo Gonzalez is an Oracle ACE Director and Chief Technology Officer at IT
Convergence, leading the decision of technology strategy for technology platforms,
partnerships, and external relationships. Specializing in E-Business Suite, Oracle
Business Intelligence, and Fusion Applications, with more than 15 years implementing
and upgrading Oracle Applications for worldwide organizations, Gustavo has led
early adopter programs for Oracle E-Business Suite and Oracle Fusion Applications.
Based in Argentina, he enjoys traveling for business and leisure with his family
around the world.

00-FM.indd 2 11/8/13 5:36 PM

www.allitebooks.com

http://www.allitebooks.org

®

Oracle Fusion Applications
Development and
Extensibility Handbook

Vladimir Ajvaz

Anil Passi

Dhaval Mehta

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 3 11/12/13 11:21 AM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-174370-9

MHID: 0-07-174370-7

e-book conversion by Cenveo® Publisher Services

Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-174369-3,

MHID: 0-07-174369-3

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 369-3cr_pg.indd 1 11/12/13 5:33 PM

www.allitebooks.com

http://www.allitebooks.org

To my wife, Milica, and our daughter, Anja—love you both.
—Vladimir Ajvaz

I dedicate this book to my wife Anjali and
two gorgeous sons, Nikhil and Anshu.

—Anil Passi

Dedicated to my lovely wife, Bhumi,
and our beautiful daughter, Aanya.

—Dhaval Mehta

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 5 11/12/13 11:18 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 6 11/8/13 5:36 PM

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

 1 Introduction to Technical Architecture .1

 2 Introduction to Customization .17

 3 Flexfields in Oracle Fusion Applications .39

 4 Security in Fusion Applications .67

 5 Run-time Customization with Oracle Page Composer . .109

 6 Extending CRM with Oracle Application Composer .141

 7 Customizing with Oracle JDeveloper .201

 8 Building a New User Interface with ADF .237

 9 Business Process Management (BPM) in Fusion Applications 295

 10 Run-time and Design-time Customizations
 of SOA Components in Fusion Applications . 309

 11 Reports .347

 12 Analytics in Fusion Applications .383

 13 Enterprise Scheduler Jobs and Processing .409

 14 Custom Look and Feel with ADF Skinning .433

 15 Integration with Fusion Applications .453

 Index .505

vii

00-FM.indd 7 11/8/13 5:36 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 8 11/8/13 5:36 PM

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Acknowledgments . xv
Introduction . xvii

 1 Introduction to Technical Architecture . 1
Technical Architecture Overview . 2
Fusion Middleware Components . 2

Oracle WebLogic Server . 4
Fusion Applications Product Families . 7
Fusion Middleware Infrastructure Components for Fusion Applications 10

Oracle Fusion Middleware Extensions
for Applications . 11

Oracle Enterprise Scheduler (ESS) . 12
Oracle Enterprise Crawl and Search Framework (ECSF) 13

Oracle Database and Oracle Essbase . 14
Enterprise Manager Controls (Administration Tools) 15
Summary . 15

 2 Introduction to Customization . 17
Understanding Types of Customization . 18

Personalization . 18
Run-Time Customization . 19
Application Extensions . 19
Design-Time Customization and Extension . 20
Other Customizations . 22

Understanding Customization Run-Time Behavior . 22
Metadata Services Repository . 22
Customization Layers . 23

ix

00-FM.indd 9 11/8/13 5:36 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

x Oracle Fusion Applications Development and Extensibility Handbook

Understanding Customization Management . 27
Using Sandbox . 28
Development Lifecycle . 35
Using Customization Manager . 36

Summary . 38

 3 Flexfields in Oracle Fusion Applications . 39
Descriptive Flexfields . 40

Example of Configuring Descriptive Flexfields 41
Extensible Flexfields . 53

Example of Configuring Extensible Flexfields 56
Key Flexfields . 58

Cross-Validation Rules . 63
Deployment of Flexfields . 65
Summary . 65

 4 Security in Fusion Applications . 67
High-Level Overview of Technology Components . 68

Oracle Internet Directory . 69
Oracle Identity Manager . 69
Authorization Policy Manager (APM) . 70
Oracle Platform Security Services . 71

Role-Based Access Control (RBAC) . 72
Role Hierarchy . 72

Authentication in Fusion Applications . 74
Authorization in Fusion Applications . 75

Function Security . 75
Data Security . 77

Use Cases and Reference Implementation . 77
Creating a Super User in Fusion Applications 77
APM Components . 86
Auto Provisioning of Roles in HCM . 104

Mapping to Oracle EBusiness Suite Components . 106
Web Services Security in Fusion Applications . 106

External-facing Web Services . 107
Troubleshooting Web Services Grants . 108

Summary . 108

 5 Run-time Customization with Oracle Page Composer 109
What Can Be Customized . 110
Customization Modes . 111
User Personalization . 113

Implicit Personalization . 113
Composer Personalization . 113

00-FM.indd 10 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Contents xi

How to Change Page Layout . 113
How to Add New Content on a Page . 115
How to Customize Fields . 121

How to Use Select Mode to Customize Fields 121
How to Use Source View Mode to Customize Fields 126

How to Customize Regions . 126
How to Customize the Task Pane . 133
How to Reset Customization . 136
How to Customize the Navigator Menu . 138
Summary . 140

 6 Extending CRM with Oracle Application Composer 141
Application Composer Overview . 142
Understanding Object Structure

in Application Composer . 144
How to Add a New Field to an Object . 146
How to Add a New Field to an Object Page . 150
How to Define Server Scripts for an Object . 154

Understanding Expression Builder . 154
Calculate a Formula Field’s Value . 156
Calculate the Default Value for a Custom Field 156
Make a Custom Field Conditionally Required 157
Make a Custom Field Conditionally Updateable 158
Define a Validation Rule for a Field . 159
Define a Validation Rule for an Object . 161
Reusable Code for Object Functions . 163
Utility Code in Global Functions . 164
Programmatically Access View Objects in Scripting 165
Define Triggers to Extend Default Processing for Object 166

How to Define Buttons and Links on Object Pages . 170
How to Define a Saved Search for an Object . 172
How to Define a Top-Level Custom Object . 174
How to Define Relationships Between Objects . 182
How to Define a Custom Child Object . 183
How to Define Subtab Content . 184
How to Define Tree Node Content . 189
How to Secure Custom Objects . 192
How to Define E-Mail Templates . 193
How to Define Object Workflow . 195
How to Define Business Processes . 198
How to Debug Server Scripts . 198
How to Extend Import and Export . 199
Summary . 200

00-FM.indd 11 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

xii Oracle Fusion Applications Development and Extensibility Handbook

 7 Customizing with Oracle JDeveloper . 201
How to Set Up a Development Environment . 202
How to Determine Application Artifacts for Customization 208
How to Customize Existing Business Components . 216

How to Modify LOV . 216
How to Add New Validation . 219

How to Customize Existing Application Pages . 224
How to Customize Search . 224
How to Add a New Attribute to a Page . 229

How to Deploy JDeveloper Customizations . 232
Summary . 235

 8 Building a New User Interface with ADF . 237
How to Create a New Custom Application . 238
Plan Your Application . 240
How to Define a New Schema . 241
How to Define New Business Components . 246
How to Implement Business Logic . 255
How to Define the Application Navigation Flow . 264
How to Define Application Pages . 270
How to Integrate with UI Shell . 285
How to Secure the Application . 289

Enable Security . 289
Add Permissions . 291

How to Deploy and Integrate with Fusion Applications 292
Summary . 293

 9 Business Process Management (BPM) in Fusion Applications 295
Oracle BPM in Fusion Applications: Architecture and Tools Overview 296

BPMN Component Run-time Environment . 298
BPMN Design Tools . 299

Example of BPM Process Customization Based
on an Existing Template in Process Composer . 304

Summary . 308

 10 Run-time and Design-time Customizations
 of SOA Components in Fusion Applications . 309
Typical Interaction Patterns with SOA Composites in Fusion Applications 310

An Example: Introducing General Ledger Journal Approvals 312
Run-time SOA Component Customizations . 320

Approvals Management, Configuration,
and Assignment Rules in Fusion Applications 321

00-FM.indd 12 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Contents xiii

Design-time Customizations . 331
Setting Up JDeveloper to Customize and Extend SOA Composites 332
An Example of Extending and Customizing SOA Components 339

Summary . 345

 11 Reports . 347
BI Publisher Report Architecture in Fusion Applications 348

Data Model . 349
Template . 361
Report Output . 361

BI Publisher Report Example . 362
System Variables in BI Publisher for Fusion Applications 376
Customizing the BI Publisher Layout Templates 377

Further Information on Reporting in Fusion Applications 379
Other Reporting Techniques in Fusion Applications 379

Summary . 382

 12 Analytics in Fusion Applications . 383
OTBI Architecture and Concepts . 384

Introduction to OBIEE . 384
Leveraging OBIEE in Fusion Applications . 388

OTBI Examples and Guidelines . 396
A Simple Analysis Report with Graph . 396
Importing Custom Objects into OBIEE for OTBI Reporting 399
Joining Two Subject Areas into a Single Report 405
Steps for Including Flexfields in OTBI . 407

Summary . 407

 13 Enterprise Scheduler Jobs and Processing . 409
Enterprise Scheduler in Fusion Applications . 410

Overview of ESS for System Administrators . 410
Overview of ESS for Fusion Applications Developers 417

Custom ESS Job Worked Example . 420
Creating a Custom Application . 421
Configuring Metadata Security for a Custom ESS Job 424
Creating a Custom PL/SQL ESS Job . 426

Summary . 432

 14 Custom Look and Feel with ADF Skinning . 433
Introduction to ADF Skinning . 434

A Very Brief Overview of Cascading Style Sheets (CSS) 435
About ADF Faces Skinning . 438

Skinning Tools and Important Resources . 440
ADF Skin Editor and an Extension for Fusion Applications 440
Reference Documentation, Browser Tools, and Other Resources 441

00-FM.indd 13 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

xiv Oracle Fusion Applications Development and Extensibility Handbook

Deploying and Setting Up a Custom Skin in Fusion Applications 444
Creating and Deploying a Custom Skin Example 444

Summary . 452

 15 Integration with Fusion Applications . 453
What Is Oracle Enterprise Repository (OER)? . 454
What Are the Different Types of Assets in OER? . 456

Web Services . 456
Business Events . 457
Scheduled Processes . 457
Tables and Views . 457
Data Model Diagrams . 458

How to Discover Integration Assets in OER . 458
Outbound Integration Patterns with Fusion Applications 463

Object Workflow . 463
Business Events . 463
Bulk Export . 464

Inbound Integration Patterns with Fusion Applications 465
Calling Web Services . 465
Bulk Import . 468
File Import . 469

An Example Integration Using Standard Patterns . 469
Define a Connection to MDS Repository

to Find an Event Definition . 470
Define a New SOA Composite Application

and Subscribe to Events . 472
Create a BPEL Process and Route the Event to the Process 475
Deploy to Application Server and Test Event Subscription 480
Build BPEL Flow to Process Location Data . 484
Deploy the SOA Composite with Concrete Service URL 494
Test the Complete Integration Flow . 496

How to Test Fusion Application Web Services . 497
How to Change the User in SOA Composite to Call Services 503

Using a Hard-Coded Username and Password 503
Using Keystore Configuration . 504

Summary . 504

 Index . 505

00-FM.indd 14 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Acknowledgments

A big thanks to our families, friends, and colleagues who put up with us over
the long period of writing. Industry insiders would appreciate the amount
 of effort that is consumed by this book—we are grateful for everyone who

supported us along the way.

We’d like to thank Paul Carlstroem, Amanda Russell, Janet Walden, Jean Bodeaux,
LeeAnn Pickrell, and the rest of the McGraw-Hill Education production team. Paul
and Amanda were a great support during the challenging times and they gently
nudged us toward the finish line. We really felt we were working as one team.

The book wouldn’t have been possible without having access to Fusion Applications
environments. We would like to thank Stuart Provan (Oracle Sales Director, UK
Technology) who helped us obtain earlier versions of Fusion Applications through the
partner program, and Tushar Thakker (founder of ORATraining.com) who provided us
with the most recent software installations that were used for the best part of the book.

We’d also like to thank Dakshesh Patel for sharing his experiences on Fusion
Applications implementation projects, especially in the area of extensions and
reporting in SaaS-based HCM environments. Also, we are grateful to Gustavo Gonzalez
for his efforts in reviewing, tech editing, and providing valuable feedback.

xv

00-FM.indd 15 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 16 11/8/13 5:36 PM

This page has been intentionally left blank

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Introduction

Oracle Fusion Applications are designed from the ground up using
primarily Oracle’s latest middleware and database technologies. They
feature hundreds of built-in business processes out of the box, which are

based on the industry’s best practices as well as a combination of features already
available in E-Business Suite, PeopleSoft, Siebel, and JD Edwards enterprise
applications.

Although feature-rich, enterprise-class products like Fusion Applications can
rarely cater to every single business requirement in a reasonably large enterprise or
organization, which often results in requirement gaps that are addressed through
customizations and extensions. And this is what leads us to the main goals of the
book, which are to provide key information and to be a consolidated reference for
the most important customization and extension techniques available in Fusion
Applications.

This book covers customization and extension approaches available in releases
up to and including version 11.1.6. Most examples in the book are demonstrated
using release 11.1.6, which was the latest release available to the authors at the time
of writing it.

xvii

00-FM.indd 17 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

xviii Oracle Fusion Applications Development and Extensibility Handbook

What the Book Covers
What follows next is a chapter-by-chapter breakdown of what’s in the book.

Chapter 1: Introduction
to Technical Architecture
In this chapter, you’ll learn about the key technology components used in Oracle
Fusion Applications. In addition to the technical architecture overview, you’ll
become familiar with extensions to Oracle Fusion Middleware components specific
to Oracle Fusion Applications.

Chapter 2: Introduction to Customization
You’ll explore the main types of changes you can perform to an out-of-the-box
installation: personalizations, run-time customizations, application extensions, and
design-time customizations and extensions. You’ll also learn how to use sandboxes
and customization manager tools to manage customizations and their deployment.

Chapter 3: Flexfields in Oracle Fusion Applications
In this chapter, you’ll learn about the role of available types of flexfields in Fusion
Applications, including descriptive, extensible, and key flexfields, along with
examples to put the theory into practice.

Chapter 4: Security in Fusion Applications
In this chapter, you’ll learn how Oracle Fusion Applications leverage Oracle Identity
Management and Oracle Entitlement Server capabilities to provide secure access to
an application’s resources and data. You’ll learn about the Authorization Policy
Manager (APM) tool and how to use it, Role-based Access Control (RBAC), function
and data security, Web services security, and how the Fusion Applications security
model maps into the E-Business Suite model.

Chapter 5: Run-time Customization
with Oracle Page Composer
You’ll learn how to use Oracle Page Composer from both end-user and system
administrator perspectives. You’ll also learn about the different modes of run-time
customizations, such as design mode, source mode, and select mode. You’ll learn
how to do field- and region-level customizations, task pane and navigator menu
customizations, and how to change page layout and add new content on a page.

00-FM.indd 18 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Introduction xix

Chapter 6: Extending CRM
with Oracle Application Composer
In this chapter, you’ll learn how to use Oracle Application Composer for run-time
customizations and extensions in CRM applications such as sales, marketing, customer
center, and CRM common and sales catalog (order capture).

Chapter 7: Customizing with Oracle JDeveloper
In this chapter, you’ll learn how to use Oracle JDeveloper to customize Fusion
Applications for situations and use cases where the business requirement cannot be
satisfied with run-time customization tools. You’ll learn about setting up Oracle
JDeveloper for customizing Fusion Applications, about the required roles for
customization, how to identify artifacts to be customized from the run-time
application, and how to deploy JDeveloper customizations.

Chapter 8: Building a New User Interface with ADF
In this chapter, you’ll learn about the building blocks of a custom application and
how to design it. This chapter shows you how to define and implement business
logic and its components, application pages, and integration with UI Shell, security,
and deployment.

Chapter 9: Business Process Management
(BPM) in Fusion Applications
You’ll learn about BPM processes available in the current product release. You’ll
also learn about BPM tools and techniques available to business analysts, process
designers, and developers, and how they can work together to optimize BPM
processes.

Chapter 10: Run-time and Design-time
Customizations of SOA Components
in Fusion Applications
In this chapter, you’ll learn how to use run-time and design-time tools such as Oracle
BPM Worklist, Oracle SOA Composer, and SOA Editor in JDeveloper to customize
and extend SOA composites. You’ll also learn about Approval Management Extensions
(AMX) and how to create your own approval rules in Fusion Applications.

00-FM.indd 19 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

xx Oracle Fusion Applications Development and Extensibility Handbook

Chapter 11: Reports
In this chapter, you’ll learn how to use BI Publisher to customize existing reports
and design (develop) your own reports.

Chapter 12: Analytics in Fusion Applications
In this chapter, you’ll be introduced to OBIEE and how it is leveraged in Fusion
Applications. You’ll also learn about Oracle Transactional Business Intelligence
(OTBI) and its function and data security features along with several examples to
provide further insight.

Chapter 13: Enterprise Scheduler
Jobs and Processing
In this chapter, you’ll learn about Enterprise Scheduler Services (ESS) architecture,
how to schedule and monitor ESS jobs, the role of the Metadata Services (MDS)
repository, and how to configure metadata security for custom ESS jobs.

Chapter 14: Custom Look
and Feel with ADF Skinning
In this chapter, you’ll learn how to apply corporate or any other branding to your
Fusion Applications using the ADF skinning feature. This powerful technique will
allow you to change the appearance of applications to suit your individual needs.

Chapter 15: Integration with Fusion Applications
In this chapter, learn how to implement the most common inbound and outbound
integration patterns with Fusion Applications. You’ll also learn about object
workflow, business events, bulk export, file import, and the use of Web services for
integration purposes. Additionally, you will follow step-by-step examples for some
of the standard patterns presented in this chapter.

Intended Audience
This book is for consultants, developers, product implementers, technical managers,
and other professionals who are either already working or intend to work on
customizing, extending, and personalizing Oracle Fusion Applications. It covers
a wide variety of topics and therefore potentially has a broad audience.

For example, some chapters like Chapter 3, “Flexfields in Oracle Applications,”
and Chapter 9, “Business Process Management (BPM) in Fusion Applications,” can
easily be followed by business analysts and functional consultants. Others, like
Chapter 7, “Customizing with Oracle JDeveloper,” and Chapter 8, “Building a New

00-FM.indd 20 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Introduction xxi

User Interface with ADF,” are aimed at technical developers. There are also chapters
in the book, such as Chapter 10, “Run-time and Design-time Customizations of SOA
Components in Fusion Applications,” which contain a good mix of sections including
both nontechnical and technical material explaining, for example, how to set up
approval hierarchies using configuration tools, but also how to add and develop new
artifacts into an existing SOA process using JDeveloper.

As far as technical content in the book is concerned, and there is plenty of it, we
assume that you have a good knowledge of Oracle Fusion Middleware and Oracle
Database technologies, tools, and development techniques. The aim of this book is not
to teach you how to get started in the technologies that underpin Fusion Applications,
but to provide guidance on how to use them in the context of product customizations
and development of extensions. However, we do try to provide a gentle introduction to
these technologies where possible in the book.

Two major options for deploying Oracle Fusion Applications are OnPremise or
Software-as-a-Service (SaaS). This book assumes that you have unrestricted access to
an OnPremise installation as the SaaS option restricts you from performing some of
the tasks and techniques described in this book. If you are a reader with access to an
SaaS environment only, we advise you to get in touch with your Oracle account
manager or Oracle Support representative to become familiar with what customization
and extension techniques are available to you and how they are different from the
OnPremise deployment option.

00-FM.indd 21 11/8/13 5:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

00-FM.indd 22 11/8/13 5:36 PM

This page has been intentionally left blank

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
1

Introduction to
 Technical Architecture

01-ch01.indd 1 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

2 Oracle Fusion Applications Development and Extensibility Handbook

This chapter will provide a bird’s-eye view of the key technical components of
Oracle Fusion Applications with emphasis on those that are typically relevant
to designers and developers of extensions and customizations. Detailed

deep-dive and technical insights will be provided in the subsequent chapters in this
book, and the highlights provided in this chapter give a cursory glimpse of the
technology components that are used to build Fusion Applications.

While reading this chapter, and of course the rest of this book, keep in mind that
some of the key drivers that shaped the technical architecture of Fusion Applications
were to have an efficient, productive, and predictable user experience, and to build
an adaptable applications platform based on established standards such as Java,
Service Oriented Architecture (SOA), Extensible Markup Language (XML), Business
Process Execution Language (BPEL), and technology acceptance that is suitable for
current and emerging trends such as cloud and mobile computing, social media,
embedded business intelligence, predictive analytics, and so forth.

Fusion Applications (11.1.X) are built using Oracle Fusion Middleware 11g
components, Oracle Database 11g, and Oracle Essbase, and the focus of this
chapter is to outline the way those technologies are leveraged and exploited to
build Oracle Fusion Applications.

Technical Architecture Overview
On the level of technology, Fusion Applications primarily use Oracle Fusion
Middleware and Oracle Database as depicted in Figure 1-1. In addition to the
standard Fusion Middleware components, you can see an extra technology layer
called Fusion Middleware Infrastructure Components, which are specific to Fusion
Applications to provide a common and reusable framework that can be applied to
any Fusion Applications product.

In comparison to other Oracle Applications products such as Oracle E-Business
Suite, there is a visible shift in the pronounced use of standard application middleware
features such as Identity Management and SOA. However, Fusion Middleware
Extensions for Applications (Applications Core or applcore) still feature prominently
in the technology stack, and we will cover them extensively throughout the book as
they are essential tools in the application designer’s arsenal. The components, such
as flexfields, UI templates, document attachments, and hierarchical trees, are some
of the tools that promote common development standards across applications.

Fusion Middleware Components
It shouldn’t come as a surprise that Oracle Fusion Middleware and its components
provide the principal infrastructure foundation to Fusion Applications and its product
families. Oracle has heavily invested in making Fusion Middleware a complete,

01-ch01.indd 2 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 3

open, and integrated set of components that fall into different categories and
functional areas:

 ■ Development Tools and Frameworks (JDeveloper, Applications Development
Framework, Enterprise Pack for Eclipse)

 ■ User Experience (WebCenter)

 ■ Service Oriented Architecture (SOA Suite)

 ■ Content Management

 ■ Business Intelligence

 ■ Data Integration

FIGURE 1-1. Fusion Applications architecture overview

Enterprise Manager Grid Control

Enterprise Manager Fusion Applications Control

Product Families (Financials, HCM, CRM, PRC)

Oracle WebLogic Server

Enterprise
Scheduler (ESS)

Enterprise Crawl &
Search

FMW Extensions
for Applications

Oracle ADF Secure Enterprise
Search

Oracle Data
Integrator (ODI)

Content
Management

Oracle Business
Intelligence

Oracle HTTP
Server (OHS)

Oracle Identity
Management

Oracle WebGate
Oracle SOA and

BPM Suite

WebCenter
WSM Policy

Manager

WebLogic
Communication

Services

Oracle Fusion Middleware (FMW)

FMW Infrastructure Components for Fusion Applications

Oracle Fusion Middleware Components

Database Control

Oracle Fusion Applications
Schemas

Oracle Database

Oracle Fusion Middleware
Schemas

01-ch01.indd 3 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

4 Oracle Fusion Applications Development and Extensibility Handbook

 ■ Application Grid (WebLogic Server, JRockit, Oracle Coherence, Oracle
HTTP Server, Web Cache)

 ■ Identity Management (Directory Services, Access Management, Identity
Federation, Identity Administration, Entitlement Services, Identity Analytics)

While our book touches on most of the previously listed topics in later chapters, we
will now take this opportunity to have a detailed look at Oracle WebLogic Server,
the foundation component on which all Java-based Oracle Fusion Middleware
components are built.

Oracle WebLogic Server
WebLogic Server is where applications and products are deployed, managed, and
monitored. It is also a place where security, database connection management,
messaging, and other key features are configured and administered.

The most important concepts that are fundamental to WebLogic Server are server
instance, domain, and cluster. A WebLogic Server instance is a Java Virtual Machine
(JVM) process that is executing Java code written to Java EE and/or WebLogic API
specifications. The server consists of a number of deployment containers such as Web
Container that run deployed Java EE Web applications, JDBC and JMS Services that
manage communication with database and Java Messaging Service resources, Security
Services, Request Management Services, and Java Runtime Environment (JRE).

The domains are a logical grouping of WebLogic Server instances for
administration and configuration purposes. There are two types of WebLogic
Servers:

 ■ Administration (Admin) Servers

 ■ Managed Servers

Admin Server is a special type of WebLogic Server and is used for domain
administration, configuration, and monitoring. There can only be one Admin Server
within a domain. What distinguishes the Admin Server from other (managed) servers
is that it performs some additional functions:

 ■ Configuration management for all servers that belong to its domain. Stores
the master copy of the domain configuration including the configuration of
other servers (managed servers).

 ■ Provides administration consoles to manage the domain and its servers;
the consoles are HTML-based and can be accessed through a browser to
perform administration, configuration, and monitoring tasks.

 ■ Enables server and service migration as well as deployment of applications
within the domain.

01-ch01.indd 4 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 5

Admin Console

Fusion
Middleware

Control

Admin Server

HCM Applications

Managed
Server

HCM SOA Server

Managed
Server

WebLogic Domain

Managed servers, on the other hand, are running instances of WebLogic Server
where Java EE applications are usually deployed, and they also host other resources
required by applications. There is nothing preventing you from deploying an
application to the Admin Server; however, that is not recommended in a production
environment as all applications should be deployed to the managed servers within
the domain. Managed servers are independent of each other unless they form a part
of a cluster (discussed shortly); the number of managed servers is unlimited, and they
can be added as necessary to either increase capacity or group similar applications
together.

When managed servers are started, they connect to the Admin Server to
synchronize its local copy of configuration files with the master copy on Admin Server.
Every time the configuration changes, Admin Server notifies the managed servers and
sends the changed configuration to them to keep the configuration in synch.

Managed servers within the domain can be grouped to form a cluster.
A WebLogic domain can have many clusters, but each managed server can
only belong to one cluster. One such example is Oracle Fusion Applications
HCM Domain, illustrated in Figure 1-2.

01-ch01.indd 5 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

6 Oracle Fusion Applications Development and Extensibility Handbook

One of the main benefits of clusters is application scalability since one can keep
adding as many managed servers as necessary to increase the capacity. WebLogic
clusters also provide high availability and reliability through deployment across more
than one server. To most client applications, a WebLogic cluster will appear as a
single server instance, and applications deployed to the cluster will be deployed to
all servers within that cluster. Clusters enable some other advanced features such as
whole server migration and server migration, but the details and inner workings of
those are covered in the Oracle Fusion Middleware System Administrator’s Guide
rather than in this text.

NOTE
In Figure 1-2 you see a screen shot of Enterprise
Manager Fusion Applications Control that shows
HCMDomain configuration installed on an instance
of Fusion Applications on a single node. Therefore,
you only see one managed server per cluster, but
additional managed servers as represented by
elements with a dashed boundary in the diagram
can be added on Host 2, for example.

FIGURE 1-2. Oracle Fusion Applications HCM Domain

AdminServer

Node Manager

ess_server_1

CoreSetupServer_1

CoreProcessesServer_1

Host 1

Node Manager

Host 2

HCMDomain

CoreProcessesServer_2

CoreSetupServer_2

ess_server_2

CoreProcesses
Cluster

CoreSetupCluster

ESSCluster

01-ch01.indd 6 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 7

Each host can have a node manager, which is a WebLogic Server utility that
allows system administrators to start, stop, and restart administration and managed
servers from a remote location. The node manager is a process that is not tied to a
particular WebLogic domain but to the physical machine, for example, a Linux or
Windows host.

The WebLogic domain directory structure reflects the fact that the server
configuration is segmented by domain where each domain has one set
of configuration files. Among many configuration files, config.xml is the main
configuration file located under the config directory as shown in Figure 1-3. This
central configuration file is where the details about server instances, clusters, and
other resources for the domain are provided.

In Fusion Applications, the applications from product families, such as Oracle
Fusion Human Capital Management (HCM), are all deployed within a single domain,
which is called HCMDomain in this case. In addition to the product family–related
applications, Fusion Applications domains usually have two additional clustered
servers: Oracle Enterprise Scheduler Service (ESS) cluster and SOA cluster. The ESS
server hosts Enterprise Scheduler Application (ESS App), which manages and schedules
jobs for that product family similarly to what concurrent request managers do in Oracle
E-Business Suite, for those who are familiar with one of Oracle’s earlier enterprise
applications products. Equally, SOA servers host composite applications for the
applications that belong to the particular product family.

Fusion Applications Product Families
In the previous section, we mentioned the Oracle Fusion HCM product family
without introducing the concept of product families. Product families are
simply collections of products associated with a particular business function,
and they consist of one or many applications.

01-ch01.indd 7 11/12/13 11:43 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

8 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 1-3. WebLogic domain directory structure

config.xml

<?xml version='1.0' encoding='UTF-8'?>
<domain>
 <name>HCMDomain</name>

 <server>
 <name>ess_server1</name>
 <ssl>
 <name>ess_server1</name>
 <hostname-verification-ignored>true
 </hostname-verification-ignored>
 <listen-port>13002</listen-port>
 </ssl>
 <machine>innowave21</machine>
 <listen-port>9440</listen-port>
 <cluster>ESSCluster</cluster>
 <web-server>
 <name>ess_server1</name>
 <web-server-log>
 <name>ess_server1</name>

 </web-server>

 <app-deployment>
 <name>HcmCoreSetupApp#V2.0</name>
 <target>CoreSetupCluster</target>
 <module-type>ear</module-type>
 <source-path>/oracle/fa/appbase/fusionapps/
 fusionapps/applications/hcm/deploy/
 EarHcmCoreSetup.ear
 </source-path>
 </app-deployment>

 <library>
 <name>emcore</name>
 <target>ESSCluster,CoreSetupCluster,
 CoreProcessesCluster,HCMAnalyticsCluster,
 AdminServer</target>
 <module-type>war</module-type>
 <source-path>/oracle/fa/appbase/fusionapps/
 fusionapps/oracle_common/sysman/archives/
 applications/11_1_1_0_0_emcore.war
 </source-path>
 <security-dd-model>DDOnly</security-dd-model>
 <staging-mode>nostage</staging-mode>
 </library>

</domain>

Servers and
Clusters

App Deployments

Libraries

01-ch01.indd 8 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 9

FIGURE 1-4. Oracle HCM product family

In Figure 1-4, you can see that the Oracle HCM product family consists of
four Fusion Applications: HcmCoreSetupApp, HcmCoreApp, HcmEssApp, and
HcmAnalyticsApp. Also, you notice that individual products can be part of many
applications and that applications may extend across many products. The products,

01-ch01.indd 9 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

10 Oracle Fusion Applications Development and Extensibility Handbook

like Global Human Resources, which is shown next, are normally deployed as an
Enterprise Archive File (ear) file on the middle tier.

In addition to Human Capital Management, the current release of Fusion
Applications features the following product families: Customer Relationship
Management (CRM); Procurement; Governance, Risk, and Compliance (GRC);
Project Portfolio Management (PPM); and Supply Chain Management (SCM).

Fusion Middleware Infrastructure
Components for Fusion Applications
Most enterprises and organizations accomplish common business functions like
accounting in similar ways; however, an enterprise application such as Oracle Fusion
Financials has to provide a great deal of flexibility to accommodate requirements
that are specific to a particular organization and business environment. Take the
example of a Chart of Accounts, which is an accounting structure that is different
from one company to another.

01-ch01.indd 10 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 11

This drives the need for a specialized type of infrastructure that underpins the
extensibility and other features specific to Fusion Applications that go beyond what
Oracle Fusion Middleware offers out of the box. Oracle Fusion Applications borrows
some of the best architectural concepts from its previous application product offerings
such as flexfields from E-Business Suite, PeopleSoft tree hierarchies, effective dates,
shared reference data (SetIds), and so on.

As shown earlier in Figure 1-1, the main components of Fusion Middleware
Infrastructure for Fusion Applications are

 ■ Oracle Fusion Middleware Extensions for Applications

 ■ Oracle Enterprise Scheduler

 ■ Oracle Enterprise Crawl and Search Framework (ECSF)

Since this book is almost entirely dedicated to extensions, customizations, and
development techniques, in the next sections we’ll provide only a brief description
and summary of the Fusion Middleware Infrastructure for Fusion Applications
components as they will be covered extensively in the subsequent chapters.

Oracle Fusion Middleware Extensions
for Applications
Oracle Fusion Middleware Extensions for Applications are reusable common
components that can be used in both standard (shipped by Oracle) or bespoke
applications written by Fusion Applications developers. From a programming point
of view, the extensions are packaged as a Java library that needs to be added to the
project so that common components can be used in that project.

Following is a partial list of components that are commonly used in Fusion
Applications along with a brief summary of their features:

 ■ Flexfields Allow customers to configure Fusion Applications products
to meet the business requirements without writing custom code. Similarly
to Oracle E-Business Suite, a flexfield is a data field that is expandable and
consists of segments. Generally, they either capture and store additional
information about some business entity such as customers through the
user interface, or they can provide a multipart key identifier for a business
entity, such as account numbers so it can be uniquely identified. In Fusion
Applications there are three types of flexfields: descriptive, extensible, and key.

 ■ UI Shell Provides a default page template for all Fusion Application pages
apart from login and the password preferences page. UI Shell provides
predictable behavior of all pages, and it also enforces the use of standards
such as Oracle Fusion Guidelines, Patterns, and Standards (GPS). UI Shell
supports global search, navigation menus, and cross-application navigation.

01-ch01.indd 11 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

12 Oracle Fusion Applications Development and Extensibility Handbook

 ■ Trees Allow data to be organized in hierarchies and allow creating of
tree hierarchies based on data. Fusion Applications developers design and
deploy tree structures, while application users use trees, which are individual
instances of those structures that can be used to group and roll up data.

 ■ Attachments Provide a mechanism of attaching additional content to
a business object. An example is a purchase order with, for example, a
supplementary PDF attached to it. Users of applications can attach URLs,
plain text, desktop, and repository files to the business objects. From a
development point of view, attachments are declaratively added to the Fusion
Applications UI pages. When added, they appear on the page as Attachment
item (field), Attachment column in the table, or Attachments table.

Oracle Fusion Application developers spend most of their time working with
different components of Fusion Middleware Extensions for Applications, which is
also known as Applications Core or applcore. For example, if a developer needs to
throw a Java exception in their code, he or she will do it with help of a Java class
from the Applications Core (applcore) library:

import oracle.apps.fnd.applcore.messages.ApplcoreException;
...
Map<String, Object> tokens = new HashMap<String, Object>();
tokens.put("TEXT", "Exception text");
tokens.put("NUMBER", new BigDecimal(2001));
...
throw new ApplcoreException("XXAPP:::XXAPP_MESSAGE_NAME", tokens);

Other examples of Applications Core extensions are PL/SQL entities, FND
services, Unique IDs, document sequencing, Set IDs, TL (translatable) tables, and
WHO columns, and we will discuss them as they appear in detail in subsequent
chapters.

Oracle Enterprise Scheduler (ESS)
In addition to being able to provide an efficient user experience through browser-
based user interaction, enterprise systems like Fusion Applications are required to
have the capability of running scheduled background processes for long-running,
back-office, and reporting tasks. Users of Oracle E-Business Suite will undoubtedly
be familiar with the concept of concurrent requests, and similar functionality is
available in Fusion Applications through the Oracle Enterprise Scheduler component.

Unlike Concurrent Request Managers in Oracle E-Business Suite, Oracle
Enterprise Scheduler has a mere role of time and resource controller for the job and
its schedules; the responsibility of running the actual jobs is delegated to the client
applications, which receive callbacks from the Enterprise Scheduler engine.

01-ch01.indd 12 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 13

Managed Server

Fusion Applications WebLogic Domain

Metadata Store for Client
Applications

and
Enterprise Scheduler

Scheme

Oracle Enterprise Scheduler

Client ApplicationJob

Each Fusion Applications Domain has a dedicated ESS cluster with an Ess-app
.ear file deployed. The client server cluster runs a client application along with its
UI, which allows the application user to submit and monitor jobs.

Developers use Oracle JDeveloper and Enterprise Manager (EM) Control to
develop ESS client applications, job definitions, sets, and incompatibilities between
the jobs. Business users can use ESS Submission Request Screen (SRS) UI and ESS
Monitor UI to submit and monitor the jobs they own. The primary interface for
System Administrators is EM Control, where they can define security, monitor the
jobs for all users, define job schedules, perform ESS troubleshooting, and control
other aspects of job execution such as stopping and resuming.

Oracle Enterprise Crawl
and Search Framework (ECSF)
The ECSF redundant integrates with Oracle Secure Enterprise Search (Oracle SES)
through Security and Crawler plugins to provide the ability to perform secure
searches on ADF view objects, Fusion file attachments, and WebCenter tags. It
exposes application programming APIs, which developers can use to design and
incorporate search capability in their Fusion Applications. Developers use the View
Object editor’s Search page in JDeveloper to set search properties for business
objects.

01-ch01.indd 13 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

14 Oracle Fusion Applications Development and Extensibility Handbook

Searches are category- or keyword-based, and ECSF takes care of security and
user access rights.

Oracle Database and Oracle Essbase
Oracle Fusion Applications use Oracle Database 11g to store and retrieve transactional
data from applications. However, before Fusion Applications can be installed,
Oracle Identity Management components need to be installed first, which also use
Oracle databases for data storage and retrieval. In addition to Oracle Database 11g,
the Fusion Applications environment uses Oracle Essbase to manage
multidimensional data in analytic and performance management applications.

The transactional database, in the current release of Fusion Applications 11.1.x,
keeps data for all product families and middleware in a single database. Oracle
Fusion Applications Repository Creation Utility (Applications RCU) is used during
the environment installation to create a repository of application-specific schemas
and tablespaces for Oracle Database. The Applications RCU creates Oracle Database
schema users that own appropriate middleware and application components as
shown in Figure 1-5.

FIGURE 1-5. Fusion Applications transactional database schemas in Oracle Database

01-ch01.indd 14 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 1: Introduction to Technical Architecture 15

Enterprise Manager Controls
(Administration Tools)
Oracle Enterprise Manager is certainly one of the most important tools for monitoring
and management of applications, middleware, and Oracle databases. Fusion
Applications are shipped with a special version of Enterprise Manager (EM) known
as Fusion Applications Control (see the earlier Figure 1-4).

Fusion Applications Control enables end users and system administrators to
monitor and administer a product family within the Oracle Fusion Applications
environment. Information is presented in the form of dashboards to show real-time
performance details about running ESS jobs, WebLogic server statuses, Service
Oriented Architecture (SOA) processes, execution statuses, and so on. In addition
to Fusion Applications Control, system administrators can separately install
Oracle EM Grid Control, which provides even more centralized monitoring and
management capability to monitor Oracle Database and Oracle Fusion Middleware
components across the entire Oracle Fusion Applications environment.

Summary
In this chapter, we have glanced over most of the major technology components in
Fusion Applications. Undoubtedly, Oracle Fusion Middleware with Fusion
Applications–specific extensions functions as the principal technology toolset used
to build, deploy, and run Fusion Applications.

Its technologies provide a platform to build a user interface with the Application
Development Framework (ADF), orchestrate services with SOA Suite components,
offer security and extensibility frameworks, integrate data with the Oracle Data
Integrator tool, as well as provide tools such as Enterprise Crawl and Search, Enterprise
Scheduler Service, and so on.

In addition to the middleware components, back-end technologies such as Oracle
Database and Oracle Essbase are the primary places where Fusion Applications store
and retrieve transactional and multidimensional data.

01-ch01.indd 15 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

01-ch01.indd 16 11/12/13 11:43 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
2

Introduction
 to Customization

02-ch02.indd 17 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

18 Oracle Fusion Applications Development and Extensibility Handbook

Oracle Fusion Applications provide robust and comprehensive features and
functionality across all product areas. While out-of-the-box features satisfy
a majority of customer requirements, there may be areas of the application

that need change depending on how the business processes are followed for these
functions. The process of customizing and extending Fusion Applications ranges
from a simple change like moving UI fields around to complicated changes like
modifying an SOA business process and adding brand new objects and user
interfaces to applications.

Understanding Types of Customization
All Fusion Applications user interfaces are built using Oracle Application
Development Framework. There are different tools available to customize different
components of the application. These tools allow you to modify any existing artifact
such as a page or a View object and allow you to create a brand new artifact and
integrate with existing applications. There are mainly four types of changes you may
need to do depending on your business needs: personalization, run-time
customization, application extensions, and design-time customization and
extensions.

Personalization
Personalization is a change or changes made by an end user to any application UI.
These changes persist across user sessions and are visible every time the user logs in
to the application. The changes are visible only to the user who made the change.
Personalization is about changing the application behavior to the way an individual
end user may like, making changes based on personal preferences. These changes
are not applicable to all users in the enterprise and are done by the end users
themselves. Some of these common changes include allowing the user to save the
search criteria for future use, saving the UI table column width changes, persisting
the show or hide state of a collapsible region, or allowing the user to rearrange
certain aspects of the page. These changes are saved either implicitly when the user
makes these changes in the UI, or they are done using Oracle Page Composer using
the Edit Current Page option from the Personalization menu as shown in Figure 2-1.

Most of the end-user roles get access to the Personalization menu. Different
pages in Fusion Applications allow certain types of personalization to be done, and
this is defined by the default configuration of Fusion Applications. An administrator
can customize what an end user can personalize for a given application using tools
we will discuss in the following chapters.

02-ch02.indd 18 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 19

Run-Time Customization
Run-time customization consists of changes made by an administrator or a business
user to any application UI. These changes persist across user sessions and are visible
every time the user logs in to the application. The changes are visible to all the users
in the enterprise. These customizations are done in a similar fashion to personalization,
but these are driven by the business processes and enterprise policy concerning how
the applications need to behave, rather than an end user’s personal choice. Some of
these common changes include changing the look and feel of the UIs; adding new
content to the pages; changing the labels, display text, and other properties of fields;
or rearranging the content on the page. These changes are done using Oracle Page
Composer using the Customize Workarea Pages option from the Administration
menu, as shown in Figure 2-2.

The Administration menu is enabled for most of the Fusion Applications work
area pages. The menu is visible to only those users who have privileges to see the
administrative options available. The Customize Workarea Pages menu entry is
visible only to the users who have access to customize a given page. These options
are not available to every end user in the enterprise. If you have a family administrator
or implementation consultant role, you get access to this menu option.

Application Extensions
If you are using Fusion CRM Applications, you can use CRM Application Composer to
customize and extend certain CRM business objects and their application pages. You
use Application Composer to extend CRM applications when the default features do

FIGURE 2-1. Edit Current Page option

FIGURE 2-2. The Customize Workarea Pages option

02-ch02.indd 19 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

20 Oracle Fusion Applications Development and Extensibility Handbook

not meet your business needs. You can use CRM Application Composer to extend the
objects by adding brand new attributes, adding brand new custom objects and
associating them to out-of-the-box objects, exposing custom objects on application
UIs, and adding custom logic to change application behavior using Groovy scripts.
The Application Composer also allows you to define business events on the objects
and define business processes and workflows in response to those events. The changes
made by Application Composer are visible to all the users in the enterprise. These
changes are done with CRM Application Composer, using the Application Composer
option from the Navigator | Tools menu as shown in Figure 2-3.

The menu is visible to only those administrative and business users who have
access to Application Composer. The objects you can extend using Application
Composer are predefined by Fusion Applications and you cannot customize that
object list. Application Composer is very feature-rich. What you can do with each
out-of-the-box object is defined by Fusion Applications and it cannot be customized.
You can add as many custom objects as required and associate them to out-of-the-
box objects exposed in Application Composer. We will discuss these features and
when to use Application Composer in following chapters. Only CRM Administrators
or implementation consultant roles get access to this tool.

Design-Time Customization and Extensions
Personalization, run-time customization, and CRM application extensions allow
you to modify several aspects of the application behavior. If you need to make
other changes that are not supported by those tools, or if you need to extend

FIGURE 2-3. The Application Composer option

02-ch02.indd 20 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 21

non-CRM applications, you will need to use Oracle JDeveloper to do design-time
customizations to Fusion Applications. The design-time customization and extensions
are done by developers who understand Oracle Application Development Framework.
The customizations done in JDeveloper need to be deployed to a run-time Fusion
Applications instance to make those changes available to users. These changes are
visible to all users in the enterprise once deployed. Some of the design-time
customizations include extending non-CRM applications, changing out-of-the-box
business logic and validations for objects, changing application pages’ behavior,
building brand new applications and integrating them with Fusion Applications, and
so on. To customize an artifact in JDeveloper, you choose the Oracle Fusion
Applications Administrator Customization role when launching JDeveloper, as
shown in Figure 2-4. You will need Fusion Applications Extensions for this specific
role, and we will discuss how to set up JDeveloper for this in later chapters.

You can customize all UIs and their related application logic using JDeveloper.

FIGURE 2-4. Choosing the Oracle Fusion Applications Administrator Customization role

02-ch02.indd 21 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

22 Oracle Fusion Applications Development and Extensibility Handbook

Other Customizations
There are many other components that constitute Fusion Applications, like flexfields,
identity management and security, business processes, SOA composites, business
intelligence and analytics reports, enterprise scheduler jobs, and so on. There are
different tools available to customize and extend these components. We will focus
on UI customizations and extensions in this chapter. Details about customizing
other components of Fusion Applications are covered in specific chapters for those
components in this book.

Understanding Customization
Run-Time Behavior
Customizations made to Fusion Applications UIs via Oracle Page Composer, CRM
Application Composer, or directly done in JDeveloper are stored in a repository that
is different from the base source code. This allows the customizations to live and
progress independent of the source code. You can upgrade Fusion Applications
without the fear of it overwriting your customizations or losing them and having to
redo the customizations post-upgrade.

Metadata Services Repository
All customizations done to Fusion Applications are stored in Metadata Services
Repository, known as MDS. The MDS can be configured to be a file-based or
database-based repository. The default and recommended configuration for Fusion
Applications is to use a database for MDS. There are some customizations, like the
Navigator menu, BPMN processes, and reports, that are not stored in MDS. The
customizations are stored as an XML file in MDS and capture the delta from the
original or base document. All of Fusion Applications’ run-time engines are MDS-
aware, so the customizations are uniformly applied and honored. The XML file
determines what the final run time should look like after applying the customizations.
When you customize Fusion Applications using any of the tools, the customizations
are written to the MDS Repository configured for deployed Fusion Applications. The
customizations are stored in different directories depending on what artifact you
customize.

 ■ persdef Any customization made to an ADF Business Component like an
entity object or view object or application module is stored in this directory.

 ■ oracle Any customization made to an ADF UI artifact like a JSFF or
JSPX or a pagedef file associated to the UI is stored in this directory. Any
customization made to a Web service schema XSD file is also stored in this
directory.

02-ch02.indd 22 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 23

 ■ sessiondef Any new artifact created using CRM Application Composer
or JDeveloper, like a new view link or application module, is stored in this
directory.

The MDS repository is integrated with WebLogic Scripting Tool (WLST) and you
can use the commands to interact with the repository. You can upload, download, or
delete documents in the MDS repository using the WLST commands. Incorrect or
corrupt entries in the MDS repository can cause undesirable run-time behavior for
Fusion Applications, and you should be extremely careful when directly interacting
with the MDS repository to make any changes. You should use the customization
tools available for all the changes and use direct MDS interaction only when you
need to reverse or add a change not supported by any of the tools.

Customization Layers
The customizations made to Fusion Applications are applicable to all users in the
enterprise. However, it is possible that some of the customizations are not necessary
for all users and you may need to restrict only certain users who will see these
customizations. Fusion Applications have built-in customization layers that allow
you to achieve this separation of customization between sets of users. When you
customize a page, you first choose the layer for which it should be customized. The
customization XML is stored in MDS with the layer information from the tools used
for customization. When a request comes for an artifact, the run-time engine checks
the MDS repository for an XML file that matches the artifact and the given context or
layer, and if there is a match, it applies the customization on top of the base artifact.
If there is no matching customized document found for the artifact in the given
context, the base artifact is returned and used for the run-time rendering. Figure 2-5
shows how the layers are applied at run time from the MDS repository. In this
graphic, the Data Steward Dashboard is customized for the Customer Data Steward
role layer. At run time, when a user with the Customer Data Steward role is logged
in to the application, the MDS engine finds a match in the repository and applies
the customization on top of the base Data Steward Dashboard document. If the
same page is requested by a use that does not have the Customer Data Steward role,
like a data steward manager, no customization is applied and the base document is
used to show the page.

Similar to customizations, the end-user personalizations are also stored in the
MDS repository. The personalizations done by end users are stored in the User layer.
Since these changes are the same as any other customization but just stored in a
different layer, the MDS engine simply applies these additional changes for a given
user. Figure 2-6 shows how multiple layers are applied at run time from the MDS
repository. In this illustration, a page is customized for the Customer Data Steward
role layer by an administrator. The page is also personalized by User 1. At run
time, when User 1 is logged in the MDS engine finds a match in the repository.

02-ch02.indd 23 11/12/13 11:46 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

24 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 2-5. Applying layers at run time from the MDS repository

XML
(Customer Data Steward

Role Customization)

XML
(Data Steward Dashboard Page

 Base Document)

XML

XML

Customization Applied

MDS in Oracle Database

Customized Data
Steward Dashboard

Page

Seeded Data
Steward Dashboard

Page

MDS as �at �les

No Customization Applied

02-ch02.indd 24 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 25

FIGURE 2-6. Applying multiple layers at run time from the MDS repository

XML
(User 1 Personalization)

XML
(Data Steward Dashboard Page

 Base Document)

XML

XML

User 1 (Personalization Applied)

MDS in Oracle Database

User 1 Data Steward
Dashboard Page

User 2 Data Steward
Dashboard Page

MDS as �at �les

User 2 (No Personalization Applied)

XML
(Customer Data Steward

Role Customization by Admin)

02-ch02.indd 25 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

26 Oracle Fusion Applications Development and Extensibility Handbook

It then applies the customization on top of the base page document for the
Customer Data Steward role and then applies the personalization for User 1. If the
same page is requested by another Customer Data Steward User 2 that does not
have any personalization done, only the Customer Data Steward role layer
customization is shown to the user. If the same page is requested by a user who
does not have the Customer Data Steward role, like a data steward manager, no
customization or personalization is applied and the base document is used to show
the page.

Several customization layers are available for Fusion Applications. The layers
available depend on what application you are customizing. The customization layers
are hierarchical, which allows you to make changes at multiple layers without
overwriting each other. The following layers are available for all Fusion Applications.

 ■ Global Customizations made to this layer are applicable to all the
users of the application. Customizations from this layer are added to the
artifact’s XML file for everyone. Any customizations made to ADF business
components in JDeveloper must be done in the global layer.

 ■ Site Customizations made to this layer are applicable to all the users
for a particular site or deployment. You can choose to do administrator
customizations using Oracle Page Composer at a site level if the change
should be applicable to all users for a given site. Any customizations made
using CRM Application Composer are done in the site layer too.

 ■ Product Family Customizations made to this layer are applicable to
applications for a given product family. This layer is not exposed to
customers. This is Fusion Applications’ internal-only layer for seeded
customizations for shared regions.

 ■ Product Customizations made to this layer are applicable to applications
for a given product. This layer is not exposed to customers. This is Fusion
Applications’ internal-only layer for seeded customizations for shared
regions.

 ■ Role Customizations made to this layer are applicable to users
with a specific enterprise role. This layer is available only for CRM Fusion
Applications. When you use Oracle Page Composer to customize CRM
application pages, you can pick what role the customization should
be applied to. This layer is not available to other applications.

 ■ External or Internal Customizations made to this layer are applicable
to the specific type of users. This layer is available only for CRM Fusion
Applications. When you use Oracle Page Composer to customize CRM
application pages, you can pick if the change is for an internal user or an
external user. If you choose internal, the changes are visible to users that

02-ch02.indd 26 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 27

are internal to the deploying company, like the employees. If you choose
external, the changes are visible to users that are external to the deploying
company, like the partner users.

 ■ HcmCountry Customizations made to this layer are visible for users for a
given country. This layer is available only for HCM applications for country-
specific localization purposes.

 ■ HcmOrganization Customizations made to this layer are visible for
users for a given HCM Organization. This layer is available only for HCM
applications.

 ■ User Any end-user personalization is saved in this layer. This layer is
available only to end users and it is implicitly set when the user chooses the
Personalize menu option. The Administrator cannot choose the User layer
for other customizations.

Table 2-1 shows a summary of which customization layer is available for which
tool and which applications can use that layer.

The MDS run time applies the changes on the base document starting from the
lowest level up to the highest level in a given context. The global layer is the lowest
or base, and the user level is highest in this hierarchy. The highest level is considered
tip in a given run-time context. The customizations from the tip layer take precedence
over all other layers. For example, if an administrator customizes a label on the UI
at the site layer and also modifies it for a role layer, the customization from the role
layer will be visible at run time. If the customizations made for each layer are not for
the same attribute or property, they are merged and all customizations are visible at
run time. All the tools ask you to pick the customization layer before you can start
making any changes. It is recommended to use as low a level as possible for
customizations so that it is easy to make more customizations and changes in the
future when there are new business needs.

Understanding
Customization Management
All the customizations must be fully tested in an isolated environment to make sure
they do not break any existing functionality and customizations work as expected.
Customizations are done by developers, administrators, or business users depending
on what tool is being used for the customization. Once the customizations are done
and tested locally in an isolated environment, they can be published in a central test
environment where QA, project managers, and end users can perform testing and
validations. Once everything is working to your satisfaction, the customizations will
be published to a production environment.

02-ch02.indd 27 11/12/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

28 Oracle Fusion Applications Development and Extensibility Handbook

Using Sandbox
Sandbox is a virtual environment where the customizations can be made and tested
in the deployed application. Sandbox allows you to isolate the customizations
from the other users of the application. The customization XML files are stored in
MDS, which is available only to the sandbox. If any other users want to see the
customization, they can choose to use the sandbox and the customizations will be
visible to that user. When you are satisfied with all the customizations and ready to
make the changes available to everyone in the application, you publish the sandbox
to the main line. Publishing the sandbox will merge the customizations from Sandbox
to the main MDS repository.

TABLE 2-1. Customization Layers

Customization
Layer Available Tool

Available
Application Applicable Users

Global JDeveloper All All

Site Page Composer
Application
Composer

All All

Product Family Oracle internal
only

All in given family All

Product Oracle internal
only

Given product All

Role Page Composer CRM All users for given
role

Internal or
External

Page Composer CRM All internal or
external users

HcmCountry Page Composer HCM All users in
country

HcmOrganization Page Composer HCM All users in
organization

User Page Composer All Given single user

02-ch02.indd 28 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 29

Types of Sandboxes
Three types of sandboxes are supported:

 ■ Metadata You will use this sandbox for most of the customizations. This
type of sandbox supports making changes to application artifacts and
metadata that is stored in MDS. Any personalization, customization, or
extension can be done in a sandbox. This type of sandbox is available in
JDeveloper also when you try to deploy the customizations from JDeveloper.
You can download this type of sandbox and import it into any deployed
Fusion Applications environment.

 ■ Security You will use this sandbox when you need to customize data
security. This is needed when using CRM Application Composer to make
security changes to custom objects. When you create a security sandbox,
the Fusion data security schema is duplicated for this sandbox. Any changes
made to security policies will be applied to this copied schema. When you
publish the sandbox, these security schemas are merged back to the main
Fusion schema and will overwrite any previous customizations done to
that. You should be careful when making changes and publishing a security
sandbox because it may result in inconsistency in application if the security
policies are corrupted during the process. You can download this type of
sandbox and import into any deployed Fusion Applications environment.

 ■ Flexfield You will use this sandbox to deploy flexfields for testing. This is a
deployment-only sandbox and does not allow you to set up flexfields in the
sandbox. When you use the flexfield setup UI, you always enable flexfields
in main deployment. The flex setup changes are immediately saved to the
main Fusion schema, but the run-time applications do not see the flexfields
until they are deployed. You can use the sandbox to deploy the flexfields
and test there. Once you are satisfied with testing and setup, you can deploy
the flexfields to the main application. You do not create a flexfield sandbox
manually; it is taken care of internally by the flex setup UI deployment
process when you choose to deploy in a sandbox.

Multiple Sandbox Guidelines
Making customizations involves multiple people, and everyone will use sandboxes
to make their changes. There are two types of sandboxes that will be created during
the customization process:

 ■ Test sandbox These sandboxes are created just for testing purposes. You
create the sandbox, make some changes to see what it looks like, test it, and
then destroy the sandbox. The changes made to such sandboxes are never

02-ch02.indd 29 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

30 Oracle Fusion Applications Development and Extensibility Handbook

visible to anyone. There will be multiple such test sandboxes depending on
how many people are making and testing customizations.

 ■ Publish sandbox These sandboxes are created to publish the customizations
made to applications. You create the sandbox and make the changes that
you are happy with that you made in your test sandboxes. You do more
validation and testing in this sandbox and publish it to the main deployed
application once satisfied.

Making customizations to an application means modifying an existing artifact
or introducing a new artifact. This means that when you publish a sandbox, it is
possible that there could be conflicts saving the changes to MDS for the artifacts that
are modified. The Page Composer and CRM Application Composer tools do provide
warnings and errors when such conflicts are detected. The sandbox manager will
also detect such conflicts during publishing the sandbox and throw errors in such
cases. You can choose to overwrite the conflict and force-publish a sandbox. There
are mainly two types of conflicts that can happen when working with sandboxes:

 ■ Direct This type of conflict happens when multiple users customize the
same artifact, for example, if two users modify the same page or UI at the
same time, in the same customization layer.

 ■ Indirect This type of conflict happens when multiple users customize
something that results in modifying the same metadata file. For example,
modifying a translatable string shared by the same resource bundle or two
users creating their own custom objects that will in turn modify the CRM
Application Composer metadata file that tracks the custom objects.

To avoid such metadata conflicts, you need to follow these general guidelines on
using the sandboxes:

 ■ If multiple users share the same sandbox, they should operate on different,
unrelated objects only. Care should be taken not to modify artifacts that are
shared. If multiple users modify the same artifact concurrently, the second
user’s changes will not be saved and an error will be thrown during save.

 ■ When the sandbox is shared by multiple users, the changes made by one user
are visible to the other. Most of the changes are instantly visible to other
users when saved. You can log out and log back in to get the latest sandbox
updates for ADFbc customizations.

 ■ When multiple sandboxes are used for test purposes, you can modify any
artifacts. The sandbox is used by only one user and it is destroyed after
testing the customization. Such changes are never published to the main
deployed application.

02-ch02.indd 30 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 31

 ■ When multiple sandboxes are used for publishing, you should customize
artifacts that are mutually exclusive and do not conflict directly or indirectly.
If there are conflicts during publishing these sandboxes, you will get errors.

Managing Sandboxes
We will discuss how to create, use, and manage sandboxes in this section. The
details about deploying flexfields to a sandbox will be covered in later chapters in
this book.

Setup Sandbox

 1. Go to the sandbox manager using the Manage Sandboxes option from the
Administration menu as shown here.

 2. The Manage Sandboxes dialog allows you to create a new sandbox, make
any existing sandbox active for the current user, publish a sandbox, import
any sandbox, or view existing published sandbox details. The following
illustration shows the Manage Sandboxes dialog.

 3. Click the Create icon or choose the New option from the Actions menu to
create a new sandbox. Give a name and description to the sandbox as shown
in the following illustration. If you want to create a data security sandbox,
check the check box Create Data Security Sandbox and click the Save and
Close button. When you create a new sandbox, all the MDS data with
existing customizations is included in the sandbox.

02-ch02.indd 31 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

32 Oracle Fusion Applications Development and Extensibility Handbook

 4. To use a sandbox, select the row for a sandbox you want to use and click the
Set as Active button. The following illustration shows how to make sandbox
1 the active sandbox for the current logged-in user.

 5. Once the sandbox is made active, any customization made via Page
Composer or CRM Application Composer is isolated to this sandbox and
will be visible to any user who chooses to use this sandbox by making
it active for a given user session. Once a sandbox is made active for a
given user, it remains activated for all future logins of that user. You can
exit a sandbox by mousing over the sandbox name next to the session
sandbox label and clicking the Exit Sandbox link as shown in the following
illustration.

02-ch02.indd 32 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 33

 6. Click the Yes button in the Exit Sandbox dialog.

Migrate Sandbox Data

 1. Mouse over the sandbox name next to the session sandbox label and click
the More Details link as shown in the following illustration to see the details
of customizations made in this sandbox.

 2. The Sandbox Details dialog shows all the customizations in the sandbox for
all layers. The MDS tab shows the customizations stored in MDS, and the
Data Security tab shows the customizations done to data security policies
if this is a data security sandbox. You can filter the customizations made
by layer name like User, Site, and so on, or by the layer value, like the
name of the user who may have made the customization or site, and so on.
Figure 2-7 shows the Sandbox Details dialog.

 3. You can export all the customizations in a sandbox to a file so that it can be
used to share with others and to import in a different environment. To export
a sandbox, click on the Download All button in the Sandbox Details dialog
as shown in Figure 2-7. Specify the location of the downloaded file to save
the sandbox customizations.

 4. To import a sandbox, go to the Manage Sandboxes dialog and click the Import
button. Browse the downloaded file from where you want to import the
customizations as shown in the following illustration. Once you import
the sandbox, you will see all the customizations available to the user using
the sandbox you imported.

02-ch02.indd 33 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

34 Oracle Fusion Applications Development and Extensibility Handbook

Publishing the Sandbox

 1. You can publish the sandbox by going to the Manage Sandboxes dialog,
selecting the sandbox to publish, and clicking the Publish button as shown
in the following illustration.

FIGURE 2-7. Sandbox Details dialog

02-ch02.indd 34 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 35

 2. You can also publish the sandbox from the Sandbox Details dialog by
clicking the Publish button, as shown in the following illustration.

Development Lifecycle
Customization development needs several iterations before the final changes are
published to main deployment. Following is a typical customization development
lifecycle.

 1. Decide what type of customization you need to do.

 2. Decide the tool to be used for customization.

 3. Create a sandbox for Page Composer and Application Composer.

 a. Make customizations in the sandbox for run-time tools.

 b. Test customizations within the sandbox.

 c. Publish the sandbox to a test environment.

 4. Use JDeveloper for design-time customizations.

 a. Make customizations in JDeveloper.

 b. Test customizations locally in JDeveloper.

 c. Deploy customizations to a test environment.

02-ch02.indd 35 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

36 Oracle Fusion Applications Development and Extensibility Handbook

 5. Fix issues found during testing.

 6. Download all customizations and upload to a production environment.

Using Customization Manager
Customization Manager allows you to see all the customizations made to a given
page for all layers. You can download the customizations for the page, make
changes, and upload to any environment using Customization Manager.

 ■ Use the Manage Customizations option from the Administrator menu to
access the Customization Manager that shows all customizations for a given
page, as shown in the following illustration.

 ■ The Customization Manager shows all the artifacts customized for a given
page for all layers as shown in Figure 2-8. The Current Context column
shows customizations applicable at run time for the current logged-in user’s
session. The All Layers column shows customizations that are applicable to
other layers and may not be visible to the logged-in user’s current session.
You can switch the values for the current context or all layers to see more
details of those customizations.

 ■ You can download the customization for a given layer using the Download
link next to the customization artifact in the Current Context or the All
Layers column.

 ■ You can upload modified customizations for a given layer using the Upload
link in the Current Context or the All Layers column.

 ■ You can delete customizations done to a given artifact on the page using the
Delete link in the Current Context or the All Layers column.

 ■ You can download all the customizations for a given page using the
Download Customizations for All Layers link. You can view and modify
these customizations if needed in the XML file directly.

02-ch02.indd 36 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 2: Introduction to Customization 37

 ■ If you know the full path of a page, you can use the search box in the
Customization Manager dialog to search for a given page and see all
the customizations for that page. You do not need to navigate to that page
to see customizations.

 ■ Using Customization Manager, you can restore the previous working
version of customization done via Oracle Page Composer. When you are
in Customize Page view, go to Manage Customizations from the Page
Composer menu options as shown in the following illustration.

FIGURE 2-8. Customized artifacts

02-ch02.indd 37 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

38 Oracle Fusion Applications Development and Extensibility Handbook

 ■ You can click the Promote link for a given artifact to promote a previous
version of that artifact to tip or main deployment as shown in the following
illustration.

 ■ You can choose what previous label or save point you want to promote to
tip as shown in the following illustration.

Summary
In this chapter, we discussed various customizations possible with Fusion Applications
such as personalization, run-time customization, application extensions, and
design-time customizations. We also talked about the tools to be used for each type
of customization requirement, such as Oracle Page Composer, CRM Application
Composer, and JDeveloper. We discussed how to plan, develop, view, test, and
manage customizations using Sandbox Manager and Customization Manager. We
will discuss each customization in detail and how to achieve various use cases for
each customization.

02-ch02.indd 38 11/12/13 11:47 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
3

Flexfields in Oracle
Fusion Applications

03-ch03.indd 39 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

40 Oracle Fusion Applications Development and Extensibility Handbook

Flexfields are a user interface component within Oracle Fusion Applications.
Broadly speaking, there are two types of flexfields. The first type of flexfields
allows extra information to be captured in Oracle Fusion Applications. The

second type of flexfields allows implementers to create user-defined composite data
keys. These composite data keys can then be referenced and attached to the various
transactional records in Oracle Fusion Applications.

The flexfields that allow extra information to be captured can be further
subdivided into two types, which are descriptive flexfield and extensible flexfield.
The flexfields that allow composite data keys to be created are known as key
flexfields. In this chapter we will learn about the different types of flexfields, to
understand how implementers can configure flexfields to meet their business
requirements.

Descriptive Flexfields
Organizations that implement Oracle Fusion Applications often want to capture
additional information specific to their enterprise through the various screens. The
simplest way to achieve this is by the configuration of descriptive flexfields (DFFs),
which provide a mechanism for capturing additional data in application tables
through user-defined fields without the need to customize the underlying database
schema or the user interface.

In other words, descriptive flexfields add extra information to a transaction record.
Every data entry screen in Fusion Applications consists of a group of fields, and these
fields capture the data entered by the user. Of course, most fields have a business
purpose; for example, in the Purchase Order entry screen, the Supplier field captures
the name of the supplier from whom you purchase the goods. Oracle develops the
screens in a generic manner, with a generic set of fields, so that any company in the
world can use them. However, different companies have different or additional needs
to capture extra details about a transaction. For example, in purchasing, one company
might require a Shipping Special Instructions field, whereas another company might
require a Telephone Number of Purchaser field. To meet the requirements of different
companies, Oracle Fusion Applications comes with a preseeded set of flexible fields.
Descriptive flexfields allow you to customize your applications to capture data that
would not otherwise be captured by your application. These fields can be used to
capture values for additional fields as per business requirements. Given that these are
generic fields, they are named ATTRIBUTE1..n, ATTRIBUTE_DATE1...n, ATTRIBUTE_
TIMESTAMP1..n, or ATTRIBUTE_NUMBER1..n for character, date, date with
timestamp, and number fields respectively.

Oracle Fusion Applications tables that support DFFs have a predefined number
of ATTRIBUTE% columns. These additional attribute columns belong to the table in
which extra information is being captured; therefore, there are a limited number of

03-ch03.indd 40 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 41

attributes that can be added to the user interface using descriptive flexfields. It also
means that for each record, a value in a given DFF field can be entered just once.
At design time, the Oracle Fusion Applications product development team typically
creates approximately 20 attribute columns each for character, number, date, and
timestamp columns. This imposes a limit on the number of extra fields that can be
added to a standard Oracle Fusion Applications screen using a DFF.

The fields created using a DFF can be presented in various formats such as text
box, text area, check box, or radio group on the page. At the time of creation, these
fields can be configured as mandatory or optional. You can also configure the rule for
defaulting values into these fields when a new record is created during user data entry.

The data captured in these segments can be validated at the point of data entry
by means of value sets. Value sets are the validations that are attached to the flexfield
segments to ensure that junk data does not get entered into the fields of the record.
Value sets also allow you to present a list of values from which users can select a
value into the flexfield segment.

There is also something known as context in descriptive flexfields. A context
allows you to display different sets of fields depending on the context of the record.
For example, in the Purchase Order entry screen, you may want to create a field
named Shipping Special Instructions that can be entered for every single purchase
order record. However, you may wish to create a set of context-sensitive fields that
describe the nature of the goods being purchased. If the goods are of type
“Hazardous Materials,” then you may wish to show fields to capture information
such as whether it is life-threatening material or it is flammable. However, if the
purchase order is for buying material that requires cold storage, then you may wish
to capture the Minimum Temperature Required and the Maximum Time this item
should be kept in cold storage. In order to achieve this requirement, you will create
two contexts besides the Global Context as shown in Figure 3-1.

The Shipping Special Instructions field will always be displayed regardless of
the context selected because it belongs to the Global Context. However, the value
selected in the DFF context field will decide whether cold storage–related fields are
displayed or if hazardous materials–related fields are displayed.

The context field can be defined when configuring your descriptive flexfield. The
value selected in the context field is typically stored in the ATTRIBUTE_CONTEXT
column of the base table. The descriptive flexfield context can also be designed to
automatically select the context value of the record from one of the existing fields
in the user interface. This can be done by selecting a value in the field Derivation
Value for the Context Segment.

Example of Configuring Descriptive Flexfields
Let us take an example for creating a descriptive flexfield for the Manage Common
Lookup screen. A Common Lookup screen is delivered out of the box by Oracle
Fusion Applications to create and maintain lookup codes in the application. In this

03-ch03.indd 41 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

42 Oracle Fusion Applications Development and Extensibility Handbook

example, let us assume that we want to create the fields in the Common Lookup
screen as per Table 3-1.

As shown in Table 3-1, for this example, we want to create one field that is
visible for all the lookup values. A free text value can be entered into this field,
thus allowing the teams to capture the contact person that is the owner for this
lookup. Further, we want to display additional fields when the lookup type is
XX_INVESTMENT_BOND_TYPES or XX_LOAN_TYPES. The fields that we wish
to show for these lookups are different, as shown in Table 3-1.

In order to implement this requirement, the field Owning Team will be added to
the Global Context of the Lookup DFF. Further, two new contexts will be created,
which are Investment Bond Type Context and Loan Context.

To begin with, let us create two value sets to restrict the values users can enter
for fields Bond Type and Loan Type. In order to create these value sets, log in to
Fusion Applications as user XX_FA_IMPLEMENTOR. Chapter 4 shows the steps used
for creating this user. After logging in, click the Navigator menu, and select Setup
and Maintenance. In the Search: Tasks field in the left-hand pane, enter Manage
Value Sets and click the Search button beside the Search: Tasks field. Click Go To
Task as shown in Figure 3-2.

Next, click the Create icon in the Search Results section to create a value set.
Enter the values in the fields as shown here.

Value Set Code: XX_BOND_TYPES

Description: XX Type of Bonds

Module: Accounting Hub

Validation Type: Independent

FIGURE 3-1. Contexts in descriptive flexfields

Purchase order entry Screen

The standard Oracle �elds

Shipping special instructions

Context �eld = Cold Storage material
Min Temperature required
Max time allowed in storage

Purchase order entry Flex�eld
Con�guration

Global Context
Shipping special instructions

Context-Cold Storage material
Temperature required
Max time allowed in storage

Context-Hazardous material
Life Threatening [Y/N]
Flammable [Y/N]

03-ch03.indd 42 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 43

Value Data Type: Character

Value Subtype: Text

Maximum Length: 30

Click the Save and Close button. This will take you back to the Manage Value
Sets screen. Search on value set code XX_BOND_TYPES and click the Search
button. Next, click the Manage Values button, click the Create button, and enter
Value = GOVT, Description = Government Bonds. Click Save and Close. Click
Create again to add Value = CORP, Description = Corporate Bonds and click Save
and Close. Repeat the same steps to create another value set named XX_LOAN_
TYPE with the value set values being FIXED (Fixed Term Loan) and VARIABLE
(Variable Term Loan).

TABLE 3-1. Example for Adding DFF Fields to Common Lookup Screen

Name of
the Field

Validation
Type When Should the Field Appear

Database Column
in FND_LOOKUP_
VALUES

DFF
Context

One of the
existing
contexts can
be selected

During data entry ATTRIBUTE_
CATEGORY

Owning
Team

Free text field For all the lookup codes,
regardless of the Lookup Type

ATTRIBUTE1

Bond Type Radio group
Corporate or
Govt Bond

Visible for those records
where the Lookup Type is XX_
INVESTMENT_BOND_TYPES

ATTRIBUTE2

Number of
Years

Numeric field Visible for those records
where the Lookup Type XX_
INVESTMENT_BOND_TYPES

ATTRIBUTE3

Loan Type Drop-down list
Fixed or
Variable
interest rate

Visible for those records where
the Lookup Type XX_LOAN_
TYPES

ATTRIBUTE2

Is Early
Repayment
Allowed

A check box
with values Y
or N

Visible for those records where
the Lookup Type XX_LOAN_
TYPES

ATTRIBUTE3

03-ch03.indd 43 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

44 Oracle Fusion Applications Development and Extensibility Handbook

Next, we can go to the flexfield configuration screen. Search for the task
“Manage Descriptive Flexfields,” click the Search button, and then click Go to Task.
Here you will be presented with a screen to search the descriptive flexfields shipped
out of the box by Oracle. Given that we know the name of the table, we can also
run a SQL query as shown here to find the DFF name that we can search on to
identify the desired lookup flexfield.

select descriptive_flexfield_code, table_name from FND_DF_TABLE_USAGES
where table_name like 'FND%LOOKUP%VALUES%'

This will return FND_LOOKUP_VALUES_B as the Descriptive Flexfield Code.
Enter this value in the search field Flexfield Code. Alternately, search using wildcard
%LOOKUP% in the Flexfield Code field. Click the Edit icon after selecting the
record that has Flexfield name = Lookup values descriptive flexfield.

In the Edit Descriptive Flexfield screen, click the Create icon as shown in
Figure 3-3 to create a segment “Owning Team” under Global Segments Context.
At this stage, you can also set the Derivation Value field to LookupType, Default
Type to Parameter, and Default Value to LookupType, so that the flexfield context
is automatically defaulted to the Lookup Type at the time of data entry.

FIGURE 3-2. Navigating to the Manage Value Sets screen

03-ch03.indd 44 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 45

If you do not want to default the context, and you want the user to select the
flexfield context during data entry, then you can enter a value in the Prompt field
for Context Segment and check the Displayed check box, but leave the Default Type,
Default Value, and Derivation Value fields blank.

In the Create Segment field for Global Context, enter the values as shown here:

Name: XX Owning Team

Code: XX_OWNING_TEAM

Data Type: Character

Table Column: ATTRIBUTE1

Value Set: GL_100_CHARACTERS

Default Type: Constant

Default Value: IT Department

Prompt: Owning Team

Short Prompt: Owning Team

Display Type: Text Box

Display Height: 1

FIGURE 3-3. Set the Derivation Value to Lookup Type and create a global segment.

03-ch03.indd 45 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

46 Oracle Fusion Applications Development and Extensibility Handbook

Click Save and Close. Now click the Manage Contexts button to create the desired
contexts. In the Manage Contexts screen, click the Create icon. In the Create Context
screen, enter Display Name = Investment Bond Types Context and Context Code =
XX_INVESTMENT_BOND_TYPES and click Save. Note that it is the value in Context
Code that should match the Lookup Type field for the desired segments to be
displayed. Now the Create icon for adding Context Sensitive Segments will become
enabled, as shown in Figure 3-4.

Create the Bond Type segment as shown here.

Name: XX Bond Type

Code: XX_BOND_TYPE

Data Type: Character

Table Column: ATTRIBUTE2

Value Set: XX_BOND_TYPES

Prompt: Bond Type

Short Prompt: Bond Type

Display Type: Radio Button Group

Display Height: 1

Click Save and Close, click Create again, and repeat the process as shown next.

Name: XX Number of Years

Code: XX_NUMBER_OF_YEARS

Data Type: Character

Table Column: ATTRIBUTE3

Value Set: HRX_IE_NUMBER_5

Prompt: Number of Years

Short Prompt: Number of Years

Display Type: Text Box

Display Height: 1

Display Size: 5

Now, we need to repeat the steps for Context = XX_LOAN_TYPES, so that when
the user enters lookup values for lookup type XX_LOAN_TYPES, then segments
Loan Type and Early Repayment Allowed are displayed. In order to do so, click Save
and Close, navigate back to the Manage Contexts screen, and click the Create icon
to create a new context. In the Create Context screen, enter Display Name = Loan

03-ch03.indd 46 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 47

Context and Context Code = XX_LOAN_TYPES and click Save. Add the segments as
shown here and in the next table by clicking the Create icon in the Context Sensitive
Segments region.

Name: Type of Loan

Code: XX_LOAN_TYPE

Data Type: Character

Table Column: ATTRIBUTE2
Note: You can reuse this column in another context
provided it does not belong to Global Context.

Value Set: XX_LOAN_TYPE

Prompt: Loan Type

Short Prompt: Loan Type

Display Type: Drop-down List

Display Height: 1

Create a field Early Repayment Allowed of type Checkbox as shown here.

Name: Early Repayment Allowed

Code: EARLY_REPAYMENT_ALLOWED

Data Type: Character

FIGURE 3-4. Creating segments for context XX_INVESTMENT_BOND_TYPES

03-ch03.indd 47 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

48 Oracle Fusion Applications Development and Extensibility Handbook

Table Column: ATTRIBUTE3
Note: You can reuse this column in another context
provided it does not belong to Global Context.

Value Set: JE_YES_NO

Prompt: Is Early Repayment Allowed

Short Prompt: Early Repayment

Display Type: Checkbox

Display Height: 1

Display Type: Checkbox

Checked Value: Y

Unchecked Value: N

Display Size: 1

Click Save and Close and in the Manage Contexts screen, click Done. Click Save
and Close in the screen titled Edit Descriptive Flexfield: Lookup values descriptive
flexfield. Now, you are back in the Manage Descriptive Flexfields screen. Highlight
the record for Lookup values DFF and click Deploy Flexfield as shown in Figure 3-5.

Upon successful completion of the deployment, you will see the screen with a
confirmation message as shown in Figure 3-6.

FIGURE 3-5. Deploying a descriptive flexfield

03-ch03.indd 48 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 49

Next, you can proceed with testing this flexfield:

 1. Click OK, click Sign Out, and sign back in as XX_FA_IMPLEMENTOR.

 2. Click Navigator menu | Setup and Maintenance, and then in the Search:
Tasks field, enter Manage Common Lookups and click the right arrow. This
will display the task Manage Common Lookups in the search results. Click
Go To Task.

 3. In the Search Results region, click the + sign to create a new lookup type.
Enter the values as shown here:

 Lookup Type = XX_INVESTMENT_BOND_TYPES

 Meaning = Investment Bond Lookup Type

 Module = Accounting Hub

 4. Click Save.

 5. Next, we create the lookup codes. For ease of data entry, click the Detach
icon in the Lookup Code region. A pop-up window will appear. Click the +
sign to create a new lookup code.

 Lookup Code = US_XTR_30

 Display Sequence = 1

FIGURE 3-6. Deployment confirmation

03-ch03.indd 49 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

50 Oracle Fusion Applications Development and Extensibility Handbook

 Enabled = Y

 Start Date = Any date

 Meaning = US Treasury 30 Years

As shown in Figure 3-7, click the triangular icon to the left of the Lookup Code
field and you will see that the Context Segment is defaulted from the LookupType
and the fields belonging to Investment Bond Type Context are displayed.

Using similar steps as previously, create a new lookup type named XX_LOAN_
TYPES and create a lookup code as shown in Figure 3-8.

As a result of entering the data into flexfields, the net result of data entry in
Figure 3-7 and Figure 3-8 produces data in the database table as shown
in Figure 3-9.

Polymorphic View Objects to Support Descriptive Flexfields
As seen in Figure 3-9, the columns ATTRIBUTE2 and ATTRIBUTE3 in FND_
LOOKUP_VALUES are being used for different purposes depending upon the
value in ATTRIBUTE_CATEGORY. If you wish to expose ATTRIBUTE2 and
ATTRIBUTE3 to the real-time analytic reports by setting their BI Enabled Flags in
DFF segments, then it will not make sense for the end users to see ATTRIBUTE2
and ATTRIBUTE3 in the presentation layer of Oracle Business Intelligence
Enterprise Edition (OBIEE). Therefore, once the BI Enabled flag is set, and the DFF
has been deployed, then those DFF fields can be exposed to business users with
their user-friendly names. The business user in this case will see the type of
investment bond and type of loan as the available fields when developing real-time

FIGURE 3-7. Fields displayed when Investment Bond Type Context is displayed

03-ch03.indd 50 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 51

analytic reports in Fusion Applications. When you deploy descriptive flexfields,
then behind-the-scenes polymorphic view objects in ADF are generated, with
user-friendly names for ATTRIBUTE2 and ATTRIBUTE3. During design time in
ADF, the developer flags the column ATTRIBUTE_CATEGORY as a discriminator
attribute using JDeveloper. The DFF deployment process looks at the possible
values for this discriminator attribute, and generates one polymorphic view object
for each possible value in ATTRIBUTE_CATEGORY. These ADF view objects are
then exposed in real-time analytics reports by importing them into an RPD file
using the OBIEE tool.

FIGURE 3-8. Fields displayed when Loan Type Context is displayed

FIGURE 3-9. Descriptive flexfield data stored in database table

03-ch03.indd 51 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

52 Oracle Fusion Applications Development and Extensibility Handbook

Descriptive Flexfield Parameters
You can create Entity objects in Oracle Application Development Framework (ADF).
Entity objects are based on database tables. For flexfields, these entity objects represent
the database tables that support the screen that displays descriptive flexfields. At the
time of creating the descriptive flexfield component using the JDeveloper Flexfield
Component wizard, the product development team can create parameters that are
mapped to the Entity object attributes. These parameters can be passed to the
descriptive flexfield. Parameters can be referenced by the logic that derives the default
segment value and in table-validated VALUE set WHERE clauses. In the example for
lookup descriptive flexfield configuration, the LookupType is a parameter used for
defaulting the value for context segment.

Registration of New Flexfields for Your Custom Screens
A flexfield along with its table and column usage must be registered in the application.
You can navigate to the Register Descriptive Flexfields task under the Setup and
Maintenance menu to register new flexfields for your custom screens. In the
registration screen, you can specify the flexfield code, flexfield name, application
name, module, and BI Enabled flag. Further, you specify the table usages for your
flexfield and the ATTRIBUTE columns that will be used by this flexfield. The
registration of the flexfield can also be done using PL/SQL API
FND_FLEX_ DF_SETUP_APIS.

After the registration process is complete, you need to create a user interface
artifact in JDeveloper for your custom flexfield. To do so, you need to use the
Flexfield Business component in Oracle ADF, where you will be asked to specify
the flexfield code used during registration. Next you select the entity object for the
table containing flexfield columns and define the flexfield parameters while
mapping them to entity object attributes. Behind the scenes, the view object is
created by the flexfield component. Next, you will create a flexfield view link
between the master view object that references the base entity table and the
descriptive flexfield view component. Note that your master view object will not
contain the attribute columns used by the flexfield. The flexfield application module
must be nested within the base Application Module and the flexfield view object
must be added to the base Application Module as well. This flexfield component
can be added to the desired screen either as a part of the form component or as a
part of the table component. The lookup flexfield example that we have seen is of
type Table Component because the flexfield appears within the user interface table
for each record. To add the flexfield component, simply drag and drop the nested
DFF view object onto the parent UI component. The Oracle Fusion Applications
Developer’s Guide contains the detailed steps for performing this exercise.

03-ch03.indd 52 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 53

Extensible Flexfields
As you notice in Figure 3-9, descriptive flexfields have the following limitations:

 ■ The number of attribute columns are limited in a table, which is decided at
design time by the Oracle Fusion Applications product development team.

 ■ One single record can be attached to just one single context value, which
in the previous example was either an Investment Bond Context or the Loan
Context. In some cases you may wish to attach multiple contexts to a single
base record.

Both of these limitations can be overcome by using extensible flexfields, which
are also known as EFFs. This is made possible because the data captured for the
extensible flexfields is stored in another table that contains a foreign key to the base
table. This allows the additional information to be captured in multiple records,
using as many contexts as you desire. In other words, a screen that allows extensible
flexfields to be configured will allow the implementers to define an unlimited
number of additional segments.

It must be noted that while most of the Fusion Applications screens come
integrated with descriptive flexfields, not as many screens have provisions for
configuring the extensible flexfields. The simplest way to identify the objects that
have predefined extensible flexfields is by running the following SQL query:

select name, descriptive_flexfield_code from fnd_DF_FLEXFIELDS_VL where
FLEXFIELD_TYPE ='EFF'

Over a period of time, Oracle will keep adding extensible flexfields for more
and more screens. If you want a particular screen to contain an extensible flexfield,
then you can either extend the screen yourself following the Oracle Fusion
Applications Developer’s Guide or raise an enhancement request with Oracle
Support. The latter option is preferred because if Oracle adds an EFF to a screen
in their core product, then it becomes available to all the Fusion Applications
customers.

Every EFF involves at least two tables, the first table being the base table, for
example PER_LOCATIONS for capturing location records in HCM, and the second
table being an extension table, for example PER_LOCATION_EXTRA_INFO_F. The
result from the previous SQL query can be used to identify the tables that are
involved in an EFF by running another SQL query as shown here:

select table_name, table_type from FND_DF_TABLE_USAGES fd
where fd.descriptive_flexfield_code = 'PER_LOCATION_INFORMATION_EFF'

03-ch03.indd 53 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

54 Oracle Fusion Applications Development and Extensibility Handbook

The following table shows the results of this SQL query, which will help you identify
the tables for an EFF:

Table Name Table Type

PER_LOCATIONS BASE

PER_LOCATION_EXTRA_INFO_F EXTENSION

For SaaS customers who do not have access to the SQL tool, you can navigate to
Setup and Maintenance | Search Tasks, and search for Manage Extensible Flexfield.
After the search, click Go To Task, and click the Search button to display all the
seeded extensible flexfields that are available for you to configure. Click the Entity
Usages icon as shown in Figure 3-10 to identify the database tables used by extensible
flexfields.

The architecture of the EFFs can be explained using Figure 3-11.
At the very heart of an EFF is the context, which can be defined as either single-

row or multirow. There is not much difference between single-row EFF context and
the descriptive flexfields. A multirow context allows you to capture multiple records
as extra information. For example, against an HCM Location, you may want to

FIGURE 3-10. Database tables used by extensible flexfields

03-ch03.indd 54 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 55

capture the dates on which the Health and Safety inspection had taken place. You
can mix and match the multirow and single-row contexts into an EFF. In the example
of HCM Locations, a single record in PER_LOCATIONS can have multiple contexts
(group of fields) applicable and each context can have multiple records entered by
the users.

Extensible flexfields allow you to combine contexts into presentation groups
known as pages, which help to bring different contexts to be presented together in
the screen. Each ADF screen corresponds to one extensible flexfield category. A
category is the grouping of related data items that are considered to belong
together. You can associate any combination of contexts with a given category.
It is the category of the EFF that provides a linkage back to the base table record,
which decides the contexts that will be displayed for a given base table record.
Some flexfields come predefined with category hierarchies, allowing different
flexfield contexts to be made visible for different records.

When the Oracle Fusion product development team creates an EFF, they create
one flexfield usage for each set of tables in the application that uses the EFF. In most
cases you will see that EFFs have just one flexfield usage. But you can have more
than one object in the application that can be extended using the same extensible
flexfield. In such cases Oracle ships the EFF with multiple usages for the flexfield.

FIGURE 3-11. Architecture of extensible flexfields

Fusion Applications Page

Extensible Flex�eld usage for a DB Table

Optionally a category hierarchy

Category

Logical Pages

Context
Field 1
Field 2
Field n

03-ch03.indd 55 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

56 Oracle Fusion Applications Development and Extensibility Handbook

For example, in the case of an Items application, there might be different data levels,
such as items and item revisions. In this case, you create one usage per data level.
Defining separate usages for each set of tables allows implementers to reuse the
same extensible flexfield configuration for all data levels.

Example of Configuring Extensible Flexfields
In this example, we will add a multirecord region to the Manage Locations screen in
HCM. The Manage Locations page in Oracle Fusion Applications comes shipped
with a predefined extensible flexfield. For this example, our objective is a to add a
multirecord region that tracks the health and safety inspection checks performed on
the site location in a year. At a high level the steps for this example are

 1. Identify the extensible flexfield and create a new context for multirows.

 2. Define segments for the context.

 3. Associate the context to the EFF category on the Manage Locations page.

 4. Add the context to the EFF page.

 5. Deploy the flexfield and test.

Log in to Fusion Applications as XX_FA_IMPLEMENTOR and click Navigator |
Setup and Maintenance. In the Search: Tasks field, enter Manage Extensible
Flexfields, and Click Go to Task. In the Manage Extensible Flexfields screen, click
the Search button. This will list all the EFFs in your Fusion Applications environment.
Scroll down to select and highlight Location Information EFF and click the Pencil
icon to edit.

In the Category section, select and highlight category HcmLocationsCategory.
Click the Manage Contexts button and click the Create icon in the Manage Contexts
Search Results region. Create a new context with the properties as shown here.

Display Name: Health and Safety Inspection History

Code: XX_H_AND_S_INSPECTION_HIST

Enabled: Yes

Behavior: Multiple Rows

Next, click the + icon in the Context Usages region and add Name = Location
Information EFF, View Privileges = None, Edit Privileges = None, and click Save. It
means that the context Health and Safety Inspection History is being used for

03-ch03.indd 56 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 57

Location Information EFF. Next, click the Create icon in the section Context
Sensitive Segments and create the segment as shown here.

Name: Inspection Year

Code: XX_INSPECTION_YEAR

Unique Key: Yes

Data Type: Character

Table Column: LEI_INFORMATION1

Value Set: JEES_YEARYYYY

Required: Yes

Prompt: Inspection Year

Short Prompt: Inspection Year

Display Type: Text Area

Display Height: 1

Display Size: 4

Create a segment to capture if inspection checks were a success as shown here.

Name: Inspection Passed

Code: INSPECTION_PASSED

Unique Key: No

Data Type: Character

Table Column: LEI_INFORMATION2

Value Set: JE_YES_NO

Required: Yes

Prompt: Inspection Passed

Short Prompt: Inspection Passed

Display Type: Drop-down List

Display Height: 1

Display Size: 1

Click Save and Close. After the segments have been created, the context will
appear as shown in Figure 3-12. Click Save and Close again and then click Done.

In the region “Edit Extensible Flexfield: Location Information EFF,” click the +
sign and search and add the Health and Safety context to the category as shown in
Figure 3-13.

03-ch03.indd 57 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

58 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 3-12. Context for multirecord EFF region in Location screen

Click the Pages tab and then click the + icon in the Associated Contexts Details
region to add Associated Context “Health and Safety Inspection History” to the
Location Information page. This is shown in Figure 3-14.

Click Save and Close, and deploy the Location Information EFF. Next sign out
and sign back in to the application as XX_FA_IMPLEMENTOR user. In the Search:
Tasks field, search for Manage Locations and click Go To Task. Click the Create icon
to create a new Location, and there you should see the EFF configured for Health
and Safety as shown in Figure 3-15.

The logic for adding subsequent regions for varying sets of contexts is the same
as shown in this example. EFFs are a very powerful mechanism that allow you to
capture as many additional attributes as you desire for your Fusion Applications
screens that support EFFs.

Key Flexfields
Key flexfields (KFFs) in Oracle Fusion Applications allow businesses and other
organizations to create user-definable, unique composite keys such as accounting
codes, item codes, and many others. The key difference between descriptive or
extensible and key flexfields is that KFFs provide user-defined, unique keys or
identifiers for data entities.

03-ch03.indd 58 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 59

To illustrate the difference between KFFs and DFFs, let’s take a look at an
example. Assume for a minute that there is no such thing as key flexfields and all
you have on a screen or inside a table is a descriptive flexfield. Assume that the
basic requirement is to be able to capture values in the following additional fields
for a purchase order and invoices transaction:

Company name: GM

Cost Center: IT

Project: OFP (Oracle Fusion Project)

Expense Type: OCC (Oracle Consultant Cost)

FIGURE 3-13. Add the context that you created to Associated Contexts.

03-ch03.indd 59 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

60 Oracle Fusion Applications Development and Extensibility Handbook

If you had only DFFs available as a configuration option, when the business raises
a purchase order to IT Consulting Company, the Purchase Order Distributions table
PO_DISTRIBUTIONS_ALL would store values for the following columns in a record:

ATTRIBUTE1 : GM

ATTRIBUTE2 : IT

ATTRIBUTE3 : OFP

ATTRIBUTE4 : OCC

When an invoice is received from the consulting company, the payables clerk
would capture the Invoice Line accounting as follows in AP_INVOICE_
DISTRIBUTIONS_ALL:

ATTRIBUTE1 : GM

ATTRIBUTE2 : IT

ATTRIBUTE3 : OFP

ATTRIBUTE4 : OCC

FIGURE 3-14. Add Health and Safety Inspection History context to the Location
Information page.

03-ch03.indd 60 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 61

In other words, if DFFs were used for capturing the accounting details as in the
example, then the four text values for fields (ATTRIBUTE1...4) would be physically
duplicated in each module for the related transactions. Imagine further when this
transaction flows to the Oracle General Ledger. Given the nature of DFF, the Oracle
Database would again have to store the four columns physically into the table
GL_JE_LINES. If so, the table GL_JE_LINES would have the following values in its
DFF (descriptive flex) columns:

ATTRIBUTE1 : GM

ATTRIBUTE2 : IT

ATTRIBUTE3 : OFP

ATTRIBUTE4 : OCC

As you can see, such a design using a descriptive flexfield is flawed, as it causes
duplication of data at various places. It is also possible that the same combination of
GM-IT-OFP-OCC would be required against thousands of other purchase order
records, and the text GM-IT-OFP-OCC would be duplicated across many tables and
many records in each such table.

Clearly, the descriptive or extensible flexfield does not fit into this scenario. Let’s
now consider a new approach using a key flexfield. In this example, you have a
table named GL_CODE_COMBINATIONS with the following columns:

 ■ CODE_COMBINATION_ID

 ■ SEGMENT1

 ■ SEGMENT2

 ■ SEGMENT3

 ■ SEGMENT4

FIGURE 3-15. EFF in the Location screen

03-ch03.indd 61 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

62 Oracle Fusion Applications Development and Extensibility Handbook

You capture a single record in the table GL_CODE_COMBINATIONS as shown
in Table 3-2.

The preceding combination of four fields can now be uniquely identified by a
value of 50493 in a column named CODE_COMBINATION_ID.

Now, in the PO_DISTRIBUTIONS_ALL table, you will have a column with the
value CODE_COMBINATION_ID = 50493 that refers to the unique key
combination of the record in the KFF table.

In the Oracle Fusion Payables, even though a clerk enters the values for four
columns (one for each segment), the database stores only the reference value 50493
in the column CODE_COMBINATION_ID of the Payables Distributions table. Ditto
for the entry in the GL_JE_LINES table in the Oracle Fusion Accounting Hub
module: only the ID that references those four columns will be stored. Therefore,
all the tables (Purchase Order Distributions, Payables Distributions, and General
Ledger Journal Lines) will reference just the CODE_COMBINATION_ID. This
concept of having a unique ID that maps to a combination of other values is called
key flexfields.

Every key flexfield has a table dedicated to storing the unique combination
for a group of fields. For the GL accounting key flexfield, there is a table named
GL_CODE_COMBINATIONS. Another example is people groups in Oracle Fusion
Human Capital Management. To capture some of the key attributes of a staff, you
can define a people group flexfield. The combination of those staff attributes will
be stored in the PER_PEOPLE_GROUPS table.

It is a standard practice used by Oracle to give generic names like SEGMENT1,
SEGMENT2...SEGMENTX to these columns. These segment columns are generic
columns so that each Fusion Applications customer can reference them by whatever
name they like and by giving the desired prompt name to the key flexfield segment.

Oracle Fusion Applications delivers many KFFs out of the box, but implementers
need to configure their segments as per business needs. You can also create new
KFFs in Oracle Fusion Applications; however, this is a very rare requirement and is

TABLE 3-2. A Record in a Key Flexfield Table

Column Name Column Value

CODE_COMBINATION_ID 50493 ** a unique number value

SEGMENT1 GM

SEGMENT2 IT

SEGMENT3 OFP

SEGMENT4 OCC

03-ch03.indd 62 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 63

not covered in this book. The Oracle Fusion Applications Developer’s Guide
contains the steps for creating custom key flexfields.

Similar to DFFs and EFFs, key flexfields have something known as structure. This
allows you to define a different combination of segments for each structure. After
the structure has been created and segments have been added to that structure,
next you create the instance of that structure. For example, when you configure a
GL Chart Of Accounts key flexfield, you will define a structure and add GL Chart of
Accounts Segments to that structure. Next, you define the instance of that structure.
Within the instance, for each segment you can specify the name of Value Set and
if the segment is displayed, and if the segment is required in that instance or is
enabled for Business Intelligence. You can also assign default values for each
segment per KFF Structure’s instance. For example, the GL Chart of Accounts
Structure’s instance is assigned to a Ledger. The idea behind this approach is that
you can define a global GL Chart of Accounts Structure, and create multiple
instances of that structure, with one instance for each country. This will allow you
to specify different value sets for a segment per structure instance.

Cross-Validation Rules
Cross-validation rules (CVRs) are used to prevent the creation of invalid segment
combinations. For example, a Location key flexfield can have two structures, for
example, one for each country, the United Kingdom (U.K.) and the United States
(U.S.). For the U.S. flexfield structure, you can define a cross-validation rule that
excludes COUNTY=NY and CITY=ABERDEEN. At the time of defining cross-
validation rules, you also specify the accompanying error message that the end user
will receive if he or she uses the wrong combination of values in segments.

Whenever any component of the Oracle Fusion Applications attempts to create
a new segment combination, the flexfield engine checks all the cross-validation
rules against that KFF structure to ensure that the combination is valid. If the
combination fails to pass a rule, the error message associated with that rule is
displayed to the end user. CVRs are applied to all users in Oracle Fusion Applications
before a new segment combination is generated, but they are not applied to existing
segment combinations that already exist in the KFF tables.

To create a cross-validation rule in Fusion Applications, navigate to the Manage
Cross-Validation Rules, select a KFF structure, and then click the + sign. Give your
rule a name, description, start date, and end date, and set the enabled flag if
required. Click the icon shown in Figure 3-16 to create a Validation Filter, wherein
you can select Segment & Value combination as shown in Figure 3-17.

You also need to create a Condition Filter by selecting Segment & Value
combination. Next, enter the error message to be displayed when the cross-validation
rule fires. When you create new flexfield combinations, the system first checks the

03-ch03.indd 63 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

64 Oracle Fusion Applications Development and Extensibility Handbook

conditions filters that evaluate to true. Within those conditions, their corresponding
validation filter is executed to validate if the combination is valid for the specified
condition. If both the condition filter and validation filter evaluate to true, then the
Error message is returned to the application.

FIGURE 3-17. Specify segment and value combination for filter condition.

FIGURE 3-16. Define filter condition.

03-ch03.indd 64 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 3: Flexfields in Oracle Fusion Applications 65

Deployment of Flexfields
A flexfield should be deployed in order for its configuration to become visible in the
user interface. Deployment of a flexfield generates the ADF business component
objects that help in displaying the flexfield at run time in the user interface. Flexfields
can either be deployed globally for a Fusion Applications instance for its configuration
to become effective for all the users, or the flexfields can be deployed into a sandbox.

When you deploy a flexfield as a sandbox, that flexfield-enabled sandbox
automatically gets activated in your user session. When you sign back in to see the
changes, the sandbox is active in your session. The status of the sandbox is managed
by the Manage Sandboxes task that can be accessed from the Administrator menu of
the Setup and Maintenance area. Here you can activate, access, or delete a flexfield-
enabled sandbox. Whether you use deployment into mainline or deployment into
sandbox, in either case you must sign out and sign back in before you can see
changes you deployed in the run time.

The flexfields can also be deployed using a command-line tool in WebLogic
Scripting Tool (WLST). Log in to your server Common Domain host. The script
should be located under $APPLTOP. If you find multiple scripts, pick the one under
the atgpf folder, for example:

.../common/bin/wlst.sh
connect('weblogic_fa',’password for weblogic_fa','t3://HOST:PORT')
deployFlex('EGP_TRADING_PARTNER_ITEMS_DFF','DFF',forceCompleteEFF
Deployment=true)

To deploy all flexfields for the specified enterprise application, use
deployFlexForApp. To deploy a single flexfield, use command deployFlex.
To deploy flexfield changes that have been delivered using a flexfield Seed Data
Framework (SDF) patch, use command deployPatchedFlex.

Summary
In this chapter you have seen how Oracle Fusion Applications allows implementers
to extend the user interface without any programming effort. You should use
descriptive flexfields when you wish to add some fields for each record. Extensible
flexfields are useful when you wish to capture a large number of additional
attributes or when you wish to capture additional information in multiple records
for a single database record. Key flexfields are primarily used to capture unique
combinations of segments.

03-ch03.indd 65 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

03-ch03.indd 66 11/12/13 11:49 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
4

Security in
Fusion Applications

04-ch04.indd 67 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

68 Oracle Fusion Applications Development and Extensibility Handbook

The purpose of this chapter is to give you all the essential information so that
you can understand and work on the key security aspects in Oracle Fusion
Applications across various technology layers within this application suite.

Every business application has a basic need for securing its resources and its data.
Oracle Fusion Applications is no exception to those requirements.

At a very high level there are two key components in any security model. These
are authentication and authorization. Authentication means that the application
ensures that a person accessing a protected resource has been validated for their
username and password. The objective of authentication is to verify that the user is
actually who they say they are. Once Fusion Applications identifies the user through
authentication, then authorization is how it decides what the user can do. For
example, the authorization layer in Fusion General Ledger can decide these types
of questions:

 ■ Is the user authorized to access the Journal Entry screen?

 ■ Should the user’s activity in the Journal Entry screen be restricted to a set of
ledgers?

 ■ Should the user be allowed to enter the journals and also to post the
journals?

In this chapter, we will begin by explaining the architecture at a high level,
followed by an explanation of how usernames and passwords are validated. The key
emphasis, however, will be on authorization, which is the security layer that decides
the screens, Web services, and other components that the users can access and what
data can they view or modify. Next we will see how data security has been
implemented in some of the key modules within Fusion Applications. At the end of
this chapter you will see some troubleshooting tips.

High-Level Overview
of Technology Components
Figure 4-1 shows the high-level components in Fusion Applications Security. The
actual technical stack has further Oracle components; however, the components
listed in this figure will give you a fair idea about the architecture of Fusion
Applications Security.

04-ch04.indd 68 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 69

Oracle Internet Directory
At the very back end of the security layers is OID (Oracle Internet Directory), where
the user credentials are stored along with the user groups, permissions, and various
other user login–related attributes. OID is Oracle’s implementation of Lightweight
Directory Access Protocol (LDAP). When you install Oracle Fusion Applications, a
tool called Oracle Directory Services Manager (ODSM) gets installed as well, and it
has a URL similar to http://hostname:port/odsm. ODSM allows you to interrogate the
OID contents from a browser. Any kind of role that is created in Fusion Applications
gets registered as a group within OID. The users who have access to that role get
registered as the members of those groups in OID. Even though Fusion Applications
provides user-friendly screens to create users, roles, permissions, and so on, behind
the scenes these get registered into OID’s LDAP-based repository.

Oracle Identity Manager
Oracle Fusion Applications also comes installed with OIM (Oracle Identity Manager).
OIM allows a company to manage their users and their access to various roles
centrally from a Web console. Corporations implementing Fusion Applications have

FIGURE 4-1. High-level components in Fusion Applications Security

OID – Oracle Internet Directory
LDAP Server contains user credentials, user groups, and permissions

OIM – Oracle Identity
Management

Allows creating and
managing user identity, role

allocation, and user approval
work�ows

OAM – Oracle Access
Management

Facilitates single sign-on

APM – Authorization
Policy Manager

Manages application-
speci�c functional access and

data security

Fusion Financials, Supply Chain, CRM, and other offerings

Shared or Full HR for
person details along

with GUID that links to
OID user entry

OPSS – Oracle Platform Security Services

Fusion Applications

04-ch04.indd 69 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

70 Oracle Fusion Applications Development and Extensibility Handbook

an option to leverage the Identity Management suite installed as a part of Fusion
Applications as an enterprise-wide system. This approach has some benefits, such
as out-of-the-box integration with Fusion Human Resources to manage leaver and
joiner processes to allow automatic allocation and revocation of roles. Further
possibilities include leveraging OIM’s integration with SOA (Service Oriented
Architecture) within Fusion Middleware to facilitate various self-service–based user
management approval processes and to streamline integration with the security card
system of the corporation, integrating with canteen card facilities, staff gym
membership, and so on as applicable, subject to licensing costs verified with Oracle
for the usage of platforms beyond Fusion Applications.

Authorization Policy Manager (APM)
Oracle Authorization Policy Manager is a Web-based console for Oracle Entitlement
Server (OES) with some additional capabilities for data security in Fusion Applications.
OES is a fine-grained authorization product that defines policies allowing organizations
to control security at a granular level. For example, a coarse-grained security might
allow or disallow a user from accessing a screen, whereas a fine-grained security
can allow or disallow users seeing specific buttons and might hide/show a field or
make a field read-only and conditionally control data-related operations. Think of
APM as a user interface wrapper on top of Oracle Entitlement Server along with data
security–related features. At a very high level APM has the components listed in the
following sections.

Resource Types in APM
A resource type represents the type of a secured object. Protected application
components that share common characteristics can be represented by a particular
resource type. Examples of resource types are ADF Task Flow, Enterprise Scheduler
Service, Web services, and so on. APM allows you to define the possible actions
that can be performed on a resource type. For example, a Web service can have an
action of invoke and a page can have an action of view, customize, or grant.

Resources in APM
A resource represents a specific, secured target in a protected application. Each
resource belongs to a defined resource type. Think of resource definition as registering
a Fusion Applications artifact that is to be protected for access. For example, when
defining a resource you will enter the Web service name or the path of the ADF screen.
A resource points to an actual physical deployed code that delivers a piece of
functionality.

04-ch04.indd 70 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 71

Entitlements in APM
After you register the resource in APM, next you define entitlements for that
resource. These entitlements are also known as privileges in Fusion Applications.
Here you can bundle a group of resources and specify the actions that are allowed
on each such resource within the privilege. This bundling of resources along with
the permissible actions allowed on them is called an entitlement. For example, a
resource of type Web service can have an action named invoke. When that
entitlement is granted to a user via a role, then that user will be allowed to perform
the specified actions on the resource as defined in the entitlement definition.

Duty Roles in APM
Using APM, you can create duty roles. Oracle Fusion Applications comes with a
long list of seeded duty roles. A duty role gives a representation of the features in the
product that can be controlled for their access. For example, the Journal Entry role
and Journal Posting role can be two separate duty roles. An organization may want a
single individual to be disallowed from performing both the functions of entry and
posting on the journal, even though both the actions can be performed from the
same journal entry screen. To handle this scenario, the Oracle Fusion Applications
product team would create one duty role for each of these activities. Duty roles are
also referred to as application roles because these are specific to an application. For
example, a duty role that allows creation of new employee records has to belong to
the HCM (Human Capital Management) application and cannot belong to the
Financials suite in Fusion Applications.

Authorization Policy in APM
Next you define an Authorization policy in APM. When defining the Authorization
policy, you specify which duty roles can perform what actions on which set of
resources. You do so by attaching one or more resources to a duty role within the
Authorization Policy definition. There are two ways to attach a resource to a duty
role. You can either attach a resource directly to the duty role or you can attach an
entitlement to the duty role.

Oracle Platform Security Services
OPSS is the short name for Oracle Platform Security Services, and it is based on the
industry best practices for securing enterprise applications. OPSS supports Java
Authentication and Authorization Service (JAAS) and Role-Based Access Control
(RBAC) features. You can think of OPSS as a decision engine that resides between
the Oracle Fusion Applications code and the security repository that includes LDAP
server and APM. Given that each request made by the application is sent via OPSS
to the identity management, it is the central integration point between the application
logic and the security layer. OPSS also has an auditing feature to log which user

04-ch04.indd 71 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

72 Oracle Fusion Applications Development and Extensibility Handbook

requested access to which resource and at what timestamp. From the developer’s
standpoint, think of OPSS as a set of Java APIs that Fusion Applications calls to
authenticate and authorize the actions being performed in the application. OPSS
provides security policies that are external to application-specific code, hence it
facilitates altering the security behavior of the application without changing the
application code. OPSS can also be considered as an engine that is capable of
interpreting the authorization policies defined in APM. The benefit of this approach
is that when you change the security behavior of your application via APM, then
there is no change required to the source code of the application.

Role-Based Access Control (RBAC)
Role-Based Access Control (RBAC) restricts access to the system based on the role of
the user within the organization. Of course the desired roles have to be granted to
the user in the first place. RBAC in Fusion Applications defines “who can do what
on which set of data.” In Fusion Applications the security based on RBAC has been
implemented using a common framework across all its applications.

The terminology behind various types of roles can be confusing. Therefore, for
simplicity in this chapter we will classify the roles into two types, that is, external
roles and application roles. These roles can have further subclassifications as
explained in Table 4-1.

Both application roles and job roles categorize the users into different groups.
The job roles are categorized as per the company’s organization structure, whereas
application roles are driven by the capabilities within the product. For example, if
Fusion Applications did not have a feature for Journal Posting, then there would be
no point in defining an application role named “Journal Posting Duty.” Therefore,
application roles also reflect the application features. Someone on the Oracle design
team recognized the need for the Fusion Applications product to have a Journal
Posting feature that can potentially be separated from the Journal Entry feature, and
therefore created these as two different duty roles.

Role Hierarchy
Both the external roles and the application roles support nesting of hierarchies. The
hierarchical concept of roles is diagrammed in Figure 4-2. As evident from the example
in this figure, the policies applied to the roles at a higher level are automatically
inherited by the roles at a lower level. In other words, the policies added to the
child roles get applied in addition to the policies for the parent roles.

04-ch04.indd 72 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 73

Role
Type

Also
Known As Comments

Job
roles

Enterprise
roles

These roles get mapped to one or duty roles, because a
person who takes a job in a company is meant to perform
several duties. The name of this role has the suffix _JOB.
Some examples are Account Payables Manager Job,
General Ledger Accounting Manager Job, and so on.

Abstract
roles

Enterprise
roles

These roles are associated with a user regardless of the job
they perform within an organization. Therefore abstract
roles are at a higher level spanning various jobs, and
hence their name, abstract. Examples are Employee role,
Temporary Staff role, and so on. An organization might
decide to autoprovision the Expense Entry Duty role to all
the Employees, and likewise may decide to autoprovision the
Timesheet Entry Duty role to all the contract workers.

External
roles

Enterprise
roles

Job roles and Abstract roles are also called external roles
as these are defined in Oracle Identity Manager, which is
external to APM.

Duty
roles

Application
roles

These are the granular duties performed by the jobs.
Examples are GL Journal Entry Duty, GL Journal Approval
Duty, GL Journal Posting Duty, and so on. The name of this
role has the suffix _DUTY. The duty role provides access to
screens, reports, and dashboards via privileges and provides
access to data behind the screens using data security.

Data
roles

External
roles

You can think of these roles as data wrappers around the job
and abstract roles. The wrapper contains a WHERE condition
on the database resources that the job or abstract roles have
access to via their underlying duty roles. The duty roles
have access to resources and the resources can reference a
database view or a table, with the WHERE condition applied
to those database objects. The data roles inherit from the job
roles or abstract roles.
For example, a data role named General Accountant ANV
Common UK will inherit permissions from a job role General
Accountant. Users who have access to this data role can only
access journals that belong to ledger set ANV Common UK.
This becomes possible because an extra WHERE condition
for restricting ledgers to ANV Common UK will be appended
to the SQL queries when ledger data is accessed via the data
role General Accountant ANV Common UK.

TABLE 4-1. Types of Roles in Fusion Applications

04-ch04.indd 73 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

74 Oracle Fusion Applications Development and Extensibility Handbook

Authentication in Fusion Applications
In order to appreciate the authentication approach implemented in Fusion
Applications, it is important to highlight how security works in traditional applications.
In old-school enterprise software, the authentication process is local to the application
itself, and in those systems it is not possible to integrate authentication with a central
corporate authentication system. Local authentication means that the user logins and
their passwords are stored within the application tables itself instead of being stored
in a centralized corporate repository.

Companies these days use a variety of systems in their enterprise. Some of these
systems are hosted within the company data center, whereas other systems could be
hosted in the cloud. In order to keep the user experience seamless, it is advantageous
to have the same username and password across various applications. Fusion
Applications makes centralized authentication a possibility because it delivers an
out-of-the-box integration with Oracle Internet Directory and Oracle Identity
Management.

Technically, it is possible to use the Fusion Applications security platform for
centralized corporate authentication. Alternatively, it is also possible to configure
Fusion Applications to be authenticated from an existing centralized LDAP server
such as Microsoft Active Directory, IBM Tivoli Directory Server, and so on.

FIGURE 4-2. Sample role hierarchy in Fusion Applications

Users associated with
this role can only view

the journals.

Users associated with
this role can only view,

enter, and post the
journals.

General Ledger
Analyst Full-time

Staff Role
Policy attached to this

role allows entering and
posting the journals.

General Ledger
Analyst Part-time

Staff Role
Policy attached to this
role allows entering

the journals.

Users associated with
this role can only view
and enter the journals.

General Ledger
Analyst Role

Policy attached to this role
allows viewing the
existing journals.

04-ch04.indd 74 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 75

Typically, Human Capital Management (HCM) systems are the starting point for
registering new staff into the organization. Therefore you will find that creation of an
Employee record in HCM usually triggers creation of new user records in Fusion
Applications. In order to facilitate use cases where users have to be automatically
created from an HCM record, Oracle Identity Management has a feature that allows
organizations to define their username construction logic. For example, some
organizations will create a username called TSMITH for Mr. Tom Smith, whereas
in other organizations they might want to automatically create a username of SMITHT.
If the users are automatically generated, then the password too can be automatically
generated by the system. Again Oracle Identity Management allows implementers to
write their own initial password creation logic.

Authorization in Fusion Applications
Permission to access a resource is called authorization. Authorization ensures that
the user only has access to resources they have been granted access to. These grants
are also known as privileges or entitlements. These grants are defined in APM. As
you already know, APM is based on another Oracle Product named Oracle Entitlement
Server (OES). In Fusion Applications, authorization check is a combination of
function and data security. It must be noted that the data security feature is not a
part of Oracle Entitlement Server. The Fusion Applications team added the data
security feature to OES under the umbrella of APM.

Function security ensures that a user can access only those resources for which
they have been granted permissions. The Data security controls access to the data.
The authorization checks can either be enforced via APM or explicitly implemented
by a developer declaratively or programmatically.

Function Security
Function security decides which user can perform which set of actions on which set
of resources. A grant provides a role (or user) access for permission set (or individual
resource). The permission set is a grouping of related permissions required to complete
a task. For example, the resources to access a page and all related task flows may be
grouped together into a permission set such that they can be granted together instead
of granting each separately. This grouping of permissions is also known as entitlements.

The developer building the application has to secure the application in JDeveloper
at design time using the menu option Application | Secure | Configure ADF Security.
By doing so, all the resources within the application are protected by default. Once
these pages are protected, the only way to access them at run time is to grant access
to these components via RBAC. If the application contains a bounded task flow, then
you protect the flow’s entry point and then all pages within that ADF task flow are
secured by the policy it defines. Also, top-level pages in an unbounded taskflow are
secured by default.

04-ch04.indd 75 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

76 Oracle Fusion Applications Development and Extensibility Handbook

The security policies (resources, permissions sets, grants, and application roles)
are contained in the policy store, and security policies can be changed without any
code change. These security policies can either be defined in an APM console that
reads directly from the policy store, or they can be configured using JDeveloper in a
file named jazn-data.xml. This file is created automatically when the application is
secured. If the security policies are defined in jazn-data.xml, then those have to be
loaded into the policy store by the developer or an administrator to enable further
maintenance from APM.

Developers can also opt for explicit authorization checks by calling
authorization APIs or declaratively.

An example of a programmatic check is shown here:

if(row.getSecurityHints().allowsOperation("ApproveJournal").hasPermission())
 // code for GL Journal approval
else
 // display error message

The declarative check can be performed via Groovy expressions as in the
following examples:

#{bindings.<attrName>.hints.allows.<privilegeName>}
#{bindings.PersonId.hints.allows.UpdateEmployeeSalary}

There are many variants in which the Groovy expressions can be applied
declaratively to the user interface objects. For the complete list, see the chapter
“Implementing Oracle Fusion Data Security” in Oracle Fusion Applications
Developer’s Guide.

Authenticated and Anonymous Users
Some applications have a requirement that a portion of the application should remain
accessible even for the users who have not logged in. For example, in a recruitment
application for external candidates, the applicants should be able to register
themselves to apply for the jobs. Similarly, a business may decide to expose the
supplier registration form on the Web, thus allowing the vendors to submit requests to
register themselves for selling certain services. In these cases, the users accessing the
application may not be authenticated. In JDeveloper, to secure an ADF application, the
developer can run the Configure ADF Security Wizard by using the menu option
Application | Secure | Configure ADF Security. By running this wizard, the entire
application becomes secure except for the data model layer. In other words, running
the Configure ADF Security Wizard for an application in JDeveloper sets the flag for
OPSS to be activated for that application. The name of this flag is AuthorizationEnforce
in the adf-config.xml. Once the OPSS has been activated, the only way to make
the user interface accessible without logging in is to grant permissions to a special
role called anonymous-role. This makes it possible to write policies for the users who

04-ch04.indd 76 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 77

haven’t logged in to the application yet. After the user logs in to the application, the
anonymous-role remains and the authenticated-role gets attached to the user. This
makes it possible to write policies for all authenticated users that have successfully
logged in to the application. Additional roles that are applicable to the user get
applied in addition to the anonymous- and authenticated-role.

Data Security
Data security defines “who can do what action on which set of data.” From this
definition, “which set of data” can be enforced by appending a WHERE clause. As
for the action, you may not want certain roles to be able to modify the invoices.
Another example of an action is to control whether users should not be allowed to
delete approved invoices.

In order to secure an entity object, it is important at design time to select the
permissible actions on that entity object. Thereafter, the table backing this entity
object has to be registered in APM as a database resource. By doing so, an entry gets
created in FND_OBJECTS. Once that database object has been registered, it then
becomes possible to define WHERE clauses and different actions permissible on that
database object. The permissions on those actions on the database objects can then
be granted to the application roles. Typically there are two types of actions that can
be performed. The first set of actions consists of select, update, and delete. Other
actions are the custom actions that can be added at design time in Fusion Applications,
with the WHERE clauses controlled at run time via the policies defined in APM.

Use Cases and Reference Implementation
In this section you will find some examples of how Fusion Applications leverages its
security platform. Exactly the same concepts are applicable to any custom extension
that you develop in your implementation project.

Creating a Super User in Fusion Applications
The purpose of this exercise is to demonstrate the basic steps required for setting up
a super user. This super user login can be used during your implementation phase so
that you can create one single user to perform most implementation-related activities.
A user with these roles should be disabled after the implementation project is
complete.

In order to explain the concept of hierarchies of roles, you will be creating two
custom roles. The first role will be the XX FA Admin role, which will have security
administrator–related access. The second role will be the XX FA Implementor role,
which will inherit from the XX FA Admin role and will additionally inherit other
seeded implementation-related roles. Next, the XX FA Implementor role will be

04-ch04.indd 77 11/12/13 11:53 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

78 Oracle Fusion Applications Development and Extensibility Handbook

attached to a user named XX_FA_IMPLEMENTOR. The end result will be that this
user will have both the Admin-related and Implementation-related roles.

Log in to Oracle Identity Manager, which will have a URL similar to
http://host:port/oim. After installation your DBA should have a login for OIM
administrator named xelsysadm. This user is the default administrator for Oracle
IDM in Fusion Applications. After logging in, you will see a screen that allows you
to manage your own profile and tasks for the xelsysadm user. Click Administration
in the top-right corner of the page so that you can define or amend the roles and
users as per your business needs. In the Administration section, click Create Role.

Create a new role named XX_FA_ADMIN by entering the values as shown here,
and click Apply.

After the role has been created, the next step is to inherit existing roles. This can
be done by clicking the Hierarchy tab. Next click the subtab titled Inherits From and
then click Add as shown in the following illustration. Effectively here we are saying
that this role will inherit the permissions that already exist for a seeded set of roles.
These seeded roles are also known as the roles present in the reference

04-ch04.indd 78 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 79

implementation that is delivered out of the box with every install of Fusion
Applications.

In the Search Roles drop-down, select OIM Roles and click the right arrow
above the label Roles to Add as shown here. You will find all the OIM roles listed
that are available to be inherited by the new role being created.

04-ch04.indd 79 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

80 Oracle Fusion Applications Development and Extensibility Handbook

Repeat the steps performed for OIM Roles, so as to bring all the available roles from
Common - Abstract Roles, Common - Job Roles as shown in the following illustration.

After creating this role, make this role an administrative role for an organization
named Xellerate Users. Click Administrative Roles as shown here.

04-ch04.indd 80 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 81

Assign the Write, Delete, and Assign privileges on the Xellerate Users
organization to the XX_FA_ADMIN role.

Next we create a custom Admin user. Give this user a desired password in the
password field.

04-ch04.indd 81 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

82 Oracle Fusion Applications Development and Extensibility Handbook

After creating the user, click the Roles tab, and attach the custom role XX_FA_
ADMIN created in prior steps to this user.

Now that you have created an Administrative user, you will be able to log in as
this user. However, we need to create another role so that we can have a super user
that has not only the administrative but also the implementation access. Click Create
Role in OIM and create a role named XX_IMPLEMENTOR having a display name of
XX Implementor. Click the Hierarchy tab, select Inherits From, and then click Add.
Select Default in the Search Roles field and click the right arrow as shown here.

Next, select Setup - Job Roles in Search Roles and shuttle both Application
Implementation Consultant and Application Implementation Manager roles to the
right-hand side. Click Save to apply these changes. After creating this implementation
role, make this role an administrative role for an organization named Xellerate Users.
Click Administrative Roles as shown earlier, and allocate Write, Delete, and Assign
on the Xellerate Users organization to the XX_IMPLEMENTOR role.

Next, create an XX_FA_IMPLEMENTOR user and assign Organization Xellerate
Users and select Non Worker in the User Type drop-down list. Click the Roles tab
for this user and assign the XX Implementor role to this user. Further, you can assign

04-ch04.indd 82 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 83

various other roles to this user. During implementation it is convenient to have a super
user role that has access to all the areas within the application. Therefore you can
add all the remaining roles to this user as well, as shown in Figure 4-3. In order to
do so, select the first role, scroll down to the bottom, and then shift-click the last
role in the list. This will select all the roles, and now you can deselect the XX FA
Admin role, as it has already been added by clicking control-click. It must be noted
that the Oracle Fusion Applications security framework will create a distinct union
of all the roles available to the user. When the user logs in, an entry is created in the

FIGURE 4-3. Assign all other roles to the XX_FA_IMPLEMENTOR user.

control-click to exclude this role as it has already
been inherited by adding XX Implementor role.

04-ch04.indd 83 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

84 Oracle Fusion Applications Development and Extensibility Handbook

fnd_session_roles table for each unique role applicable to user session. At run time,
you can use the FND_SESSIONS and FND_SESSION_ROLES tables to interrogate
roles that have been applied to a user.

Running the Synchronization Processes
As a standard practice, you should have two processes scheduled. These are Run
User and Roles Synchronization Process and IDM Reconciliation Process. You do
not need to run these processes if you have simply created a user and allocated
existing roles to them. However, if you are creating new roles and making changes
in APM, then it is recommended for you to ensure that these processes are
scheduled at regular intervals.

Run User and Roles Synchronization Process Log in as XX_FA_IMPLEMENTOR
using a URL similar to https://host:port/homepage. If you are logging in for the first
time, then you will be asked to change the password.

04-ch04.indd 84 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 85

After logging in, search on Run User and Roles Synchronization Process as shown
in the preceding illustration and click on Go to Task. This program takes no parameters.
Click Submit.

Running LDAP Role Create and Update Reconciliation
In order to run LDAP Role Create and Update Reconciliation, first navigate to Oracle
Identity Manager and log in as xelsysadm user. Click the Administration link and then
click Advanced. Navigate to the System Management tab and search using wild card
Recon as shown in Figure 4-4. Click Run Now, or alternatively, create a periodic
schedule.

FIGURE 4-4. LDAP Role Reconciliation program

04-ch04.indd 85 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

86 Oracle Fusion Applications Development and Extensibility Handbook

APM Components
APM has a URL similar to https://host:port/apm. Figure 4-5 shows the key components
of APM. As mentioned previously, the APM product is based on Oracle Entitlement
Server. However, the Fusion Applications team added a data security feature to OES.
As shown in Figure 4-5, you can search for artifacts defined in APM by searching in

FIGURE 4-5. APM home page that allows you to secure artifacts in Fusion Applications

Allows you to
search in APM.

You can browse the
existing resource types that
are secured. Commonly
used are ADF Resources.

Entitlements allow you to
group resources into a bundle
along with actions permissible
on each resource. These
entitlements can then be
granted to duty roles.

Register database tables,
views, or synonyms here so
that activity on these can be
controlled via APM, assuming
security is enabled on the
underlying Entity Objects.

Role Templates allow you to create wrapper roles on top of Job Roles with data restrictions.
For example, the Payables Manager USA and Payables Manager UK roles can be generated
for the Payables Manager Job Role whenever a UK or USA business unit is created.

Resources that are to be
secured by APM must be
registered here. For example,
here you will see existing
ADF Pages and Web services
and so on registered.

Policies define the linkage
between the Duty Role
(Principal) to Resources or
Entitlements (Targets) for a
specific set of actions.

It is important to select
your application because
APM components are
specific to application.

Create Duty
Roles.

04-ch04.indd 86 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 87

the left-hand pane. When searching for components in the left-hand pane, it is
important that you first select the application. Application fscm contains the
Financials and Supply Chain Management artifacts. This includes component
offerings such as Fusion Accounting Hub, Fusion Payables, Fusion Payables, and so
on. HCM is the Human Capital Management application and CRM is the Customer
Relationship Management application.

Securing Your Custom User Interfaces in Fusion Applications
The approach taken for securing your custom user interface pages should be no
different than the techniques applied by the Oracle Fusion Applications product
development team. Let us take the example of a journal posting function in Fusion
Accounting Hub. First, the developer building the application has to secure the
application in JDeveloper at design time using the menu option Application | Secure
| Configure ADF Security.

Next, jazn-data.xml can be amended to define the policies for securing the
ADF artifacts.

As shown in Figure 4-6, jazn-data.xml can be used by the developer to easily
edit and configure the role security for the ADF artifacts. In that figure you can see
that the posting screen along with other journal posting–related artifacts are a part of
an entitlement named GL_POST_JOURNAL_PRIV, and that privilege has been
granted to two application roles, which are GL_JOURNAL_POSTING_DUTY and
GL_JOURNAL_POSTING_PROGRAM_DUTY. You can also click the Application
Roles tab to create new application roles and see the entitlements that have been
added to this role. These application roles get mapped to the job roles, and the job
roles are allocated to the users, thus allowing the users access to perform certain
functions on the Fusion Applications components. The developer then deploys the
jazn-data.xml to the policy store. Figure 4-7 shows the equivalent policy in APM
after those have been deployed to the policy store.

Exploring the APM Contents on the Public Web Site
Security Reference Implementation is the definition of authorization roles and
policies that get delivered out of the box by Oracle Fusion Applications. Besides
the APM, you can also browse the contents of reference implementation in
https://fusionappsoer.oracle.com/oer/index.jsp. When you navigate to that URL, you
will be asked to log in to your Oracle account first, and then you can select the
guest option. In the Search Criteria Type, select Role, and in the Logical Business
Area field, select All Fusion Apps: Logical Business Area. Click the Search button
and then select Fusion Accounting Hub or any other desired offering you wish to
explore. Under the Documentation Tab, open up Security Reference Manual.

04-ch04.indd 87 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

88 Oracle Fusion Applications Development and Extensibility Handbook

How Does Oracle Secure
Database Resources in Fusion Applications?
The data security policy is to secure the data in Fusion Applications. For example, if
you are given access to the Invoice Inquiry screen in Fusion Payables Manager, then
you will not be able to see the data in that screen unless you have been granted
access to the relevant business unit via data security. Similarly, if you are given

FIGURE 4-6. Editing jazn-data.xml to grant security to roles in JDeveloper

jazn-data.xml edited
in JDeveloper.

Create Entitlements in
jazn-data.zml using +
icon in Entitlement.

This privilege has access to the
following resources for the
actions enabled per resource.

The journal posting
privilege has been granted
to the following duty roles.

04-ch04.indd 88 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 89

access to the General Ledger Accounting Manager job role, you will still not be able
to view or enter any journals or balances unless you have access to the ledger via
the data security policy. In other words, with the job roles you may be able to
see the screens but not operate on the data. This is so, because the function security
is different than the data security. The data security is implemented in Fusion Applications
by something called data roles, which are nothing but the wrappers around the
job roles.

Oracle Fusion Applications delivers some out-of-the-box role templates that help
in generating the data roles. In order to understand the data roles and templates, it is

FIGURE 4-7. Policy in APM after the jazn-data.xml has been deployed to the policy store

After jazn-data.xml has been deployed to the policy
store, you can view and amend them from APM.

04-ch04.indd 89 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

90 Oracle Fusion Applications Development and Extensibility Handbook

first important to understand how security is implemented on the database resources.
At the very end of the chain, a database table contains the data that needs to be
secured. This database table might have some database views as wrappers around it,
or will be available as synonyms. Regardless, if this database object needs to be
secured, then it must be registered in APM. Figure 4-8 shows the registration
of standard Oracle table GL_LEDGERS as an example. To search on existing objects,
select Database Resources in the left-hand pane and then enter the name in the search
field and click the right arrow. Next, click Edit to browse the database resource in
APM. You will notice that it is mandatory to register the primary key of the database
resource in APM. APM allows you to register composite primary keys as well; for
example, table PAY_ALL_PAYROLLS_F has PAYROLL_ID, EFFECTIVE_START_DATE,
and EFFECTIVE_END_DATE as its primary keys.

FIGURE 4-8. Registered database resource in APM

Select this.

Click Edit.

Click here if you wish to register your own database objects with APM.

It is mandatory to set the primary key. This will allow you
to create the WHERE clause using the primary key.

04-ch04.indd 90 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 91

To create a set of WHERE clauses, you can click the Condition tab as shown in
Figure 4-9. It must be noted that adding conditions here is of no relevance unless
those conditions are applied to the database resource. Conditions that are defined
are responsible for returning a set of rows at run time and these conditions are
known as instance sets. You do not need to define a condition if you wish to return
just a single row as per the primary key or if you wish to return all the rows. As
noted from the conditions defined on GL_LEDGERS, &GRANT_ALIA.PARAMETER1..n
are the parameters that are used by the SQL predicate, and values for these parameters
can be assigned at run time. Conditions can also be defined as filters that get stored
as XML expressions in the APM and are applied to the returned records at run time.

After defining the condition, you can define actions. Actions applicable on the
entity objects are insert, update, and delete. However, you can define further actions
on the database resource. Those additional actions must have a corresponding
design-time implementation to make them effective. The Policy tab on the database

FIGURE 4-9. The conditions can be defined as SQL predicates.

04-ch04.indd 91 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

92 Oracle Fusion Applications Development and Extensibility Handbook

resource is where job, action, and condition are stitched together for data security,
as shown later in Figure 4-12. On the Policy tab, you specify that a job such as
Payables Manager USA Operations will have permissions to update the table
AP_INVOICES_ALL for the invoice records belonging to USA Operations, where
USA Operations is a business unit.

The database resource name registered in APM must match the database object
name backing the entity object. This can be seen by opening the relevant entity
object in JDeveloper. For multilanguage-based entity objects, there is more than one
table involved, in which case the database object name to be secured is decided as
per the value in the entity object property named fnd:OA_BASE_TABLE. Alternately
for non-multilanguage–based entity objects, you can use the custom property OA_
DS_BASE_TABLE on the entity object to override the database resource name to be
secured for that entity object. In order for the security policies defined on the database
resources to become effective, their corresponding entity object must be secured as
shown in Figure 4-10. This means that when you define actions in APM Security on

FIGURE 4-10. Securing the actions in an Entity object

The data security policies defined in APM on the database resource will take
effect only when their corresponding Entity object’s actions have been secured by
enabling the relevant check boxes in the security section.

04-ch04.indd 92 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 93

a database resource, those actions should be named as read, update, or delete to
correspond to the entity object security operations. It must be noted that the APM
security takes effect only when Entity Object actions have been secured at design
time in JDeveloper. Until the entity object has been secured, the security defined in
APM for the database objects will not take any effect on the Fusion Applications.
Therefore, one of the initial steps to secure data is to secure the entity object as
shown in Figure 4-10.

Besides the standard actions, that is, read, update, and delete, it is also possible
to define custom actions on a database resource. Figure 4-11 shows how the Oracle
product team has defined the custom actions on a GL_LEDGERS. These custom actions
are a design-time decision but their corresponding WHERE clause is decided in
APM and applied at run time. In ADF it is possible to define something known as
View Criteria against the view objects. The view objects are based on the entity
objects. If the entity object has been secured, then its corresponding view object
also gets secured. If you want the WHERE clause for a view object to be prepared at
run time for a certain action, then the view object can be given a dummy view
criteria name with a format as shown here:

FNDDS__<ACTION NAME>__<OBJECT NAME>__<OBJECT ALIAS>

The ACTION_NAME must be an exact match for the text APM action on that
object as shown in Figure 4-11. For example, if you open the view object for this
resource, you will find a dummy view criteria named FNDDS__GL_LEDGERS__
GL_VIEW_ACCOUNTING_PERIOD_STATUS_DATA. At run time, if the view
criteria name begins with FNDDS__, then Oracle will split the view criteria name
by double underscores to identify the object name and the action name to fetch the

FIGURE 4-11. Custom actions on a database resource

04-ch04.indd 93 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

94 Oracle Fusion Applications Development and Extensibility Handbook

applicable WHERE clause for that action. For this reason, the view criteria in
JDeveloper is a dummy view criteria because the actual implementation of the
WHERE clause is performed at run time via APM security. If you change the SQL
predicate in the condition in APM, then you can alter the security behavior of
actions on a database object without making changes to the underlying source code
of Fusion Applications. As a good practice, you should define a new condition and
attach it to an action in the database resource policy rather than modifying the
existing condition itself.

On the Policy tab, Role, Actions, and Condition are joined together to define the
data security for the database resource, as shown in Figure 4-12.

The reason the Oracle Product team introduced custom actions was to give
granular control of the nature of operations that can be performed on data. For
example, it may not be sufficient to grant a delete operation on invoices for a
business unit. The implementation team might want to restrict deletion only for the
nonapproved invoices, or the deletion should be allowed for invoices that cost less
than xyz amount. In order to achieve this, the implementation team can define new
conditions as SQL predicates and attach those conditions to the database resource
for the desired custom action. Of course you will be reliant on the Oracle product
team to have implemented that custom action at design time in the ADF application.
Therefore even though APM will allow you to define new actions on the database
resource, they will have no impact on the application because there is a dependency
on the design-time implementation of those actions.

The OBJECT_ALIAS in the FNDDS view criteria name is optional and represents
the alias used in the view object for the table name to which the SQL predicate is
being applied. The value in OBJECT_ALIAS, if present, is used as a value for &TABLE_
ALIAS shown previously in Figure 4-9.

FIGURE 4-12. Policies defined on the database resource

04-ch04.indd 94 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 95

Role Templates
During the implementation project, when it comes to granting roles to the users, you
will be granting job roles that are specific to certain data sets. For example, in Fusion
Payables you will have roles similar to Account Payables Manager US Operations,
Account Payables Manager UK Operations, and for Fusion Accounting Hub for a
company named ANV, you may allocate roles such as General Accounting Manager
ANV Common UK, and so on.

When building the product, the Oracle Fusion product development team took
some basic data granularity decisions at design time. This data granularity has been
achieved by something called dimension. In Fusion Accounting Hub, one or more
ledgers can belong to a GL access set. The product team made a decision to provide
data security for GL-related job roles at the GL Access Set levels. Similarly, Fusion
Payables provides security at the Business Unit level. In the case of Fusion Accounting
Hub, the GL Access Set can be a dimension, whereas in Fusion Payables the Business
Unit can be a dimension. It must be noted that there are also other security layers that
have been implemented in those products. During large implementations, there will
be many possible values for the dimensions such as Ledgers or Business Units. It can
become quite a laborious process for the implementation team to define job roles
manually for each such dimension value. To ease this process, Oracle Fusion
Applications allows automatic generation of data roles that are wrappers around the
job roles. This is achieved by means of a role template.

Figure 4-13 shows some of the role templates that exist out of the box in the
product. APM allows you to define your own role templates as well, which is useful
when you are developing custom modules and wish to leverage the security model
framework delivered by Fusion Applications.

These role templates come predefined with some components. These components
can be extended, or new role templates can be created in APM by the project
implementation team to secure the data in custom applications that you are
developing.

At design time, each Fusion Applications team decides the applicable dimensions
for a set of job roles. For example, the Fusion Accounting Hub team decided that
accountant’s access to journals should be controlled by GL Access Sets, which in
turn is based on GL Ledgers. In the example to follow, let us assume that there is a
need to generate a data role for a job named XX_GL_IMPORT_POST_JOB that
allows access to journal posting functions for a GL Access set named ANV Common
UK for a company called ANV, as shown in Figure 4-14.

In order to generate the desired data roles, the role template delivered by Oracle
has the following components as listed in Table 4-2.

04-ch04.indd 95 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

96 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 4-14. GL Access set for which a job role is to be generated

FIGURE 4-13. Role templates

04-ch04.indd 96 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 97

Finally you can click Generate Roles, which will generate a data role for a
Cartesian product of jobs entered in the External Roles tab and the dimensions
returned by the SQL statements. This is shown in Figure 4-18.

Set ID to Share Reference Data As shown previously in Figure 4-13, Fusion
Applications comes out of the box with various role templates. Some of those role
templates refer to SetIDs, which allow sharing of reference data across organizations.
This is made possible by partitioning the data into different sets of values. The
principles are based on the role templates that we have seen in the previous section.
You create reference data sets and attach those to the underlying master data or
transaction.

One of the implementations for SetIDs is Payment terms in Fusion Payables. A
large organization may wish to use a group of payment terms across a set of the
business units. Assume a business requirement that a company with operations in
the United States and the United Kingdom may want to use some payment terms

Role Template
Component Purpose

External Roles Add here the job roles for which the data roles must be generated.
The list of job roles secured for ledgers via Data Access Sets is shown
in Figure 4-15.

Dimension This is the data bifurcation level. In this example, as shown in
Figure 4-16, the dimension is a GL Access Set and therefore the SQL
statement is as follows, to get a list of all the GL Access Sets.
SELECT distinct access_set_id, name FROM gl_access_sets

Naming This section decides how the name of the data role is generated, that
is, by concatenating the Job name and GL Access Set name.

Policies This is where you define for each job role which database objects
need to be secured and also pass the run-time parameter value for
execution of the SQL predicate. This is shown in Figure 4-17.
Note that one data role is generated for each job in the External Role
tab for every record returned by the SQL statement in the Dimension
tab. In other words, the number of data roles generated is the
Cartesian product between the number of dimension values and
number of external roles.

TABLE 4-2. Components for Defining Data Role Templates

04-ch04.indd 97 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

98 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 4-15. Job roles for which the data roles are to be generated

globally, and certain other payment terms locally per business unit. For globally
applicable payment terms, you can create a reference data set named ANV Global
Payment Terms as shown in Figure 4-19.

When you define a reference data set, it must then be associated with a predefined
set of reference groups that have been delivered by Oracle out of the box. The
reason is that security implementation related to reference sets has design-time
implications for the entity objects. Therefore you will attach data set ANV Global
Payment terms to reference group Payables Payment Terms as shown in Figure 4-19.
Data roles can then be generated for each data set value for the applicable jobs in
the Role Template. Figure 4-20 shows the data set becoming available to the dimension
for payment terms. When creating payment terms, users can attach the payment
terms to a reference set. This allows usage of the desired payment terms by the users
that have access to data role for global payment terms.

As you have noticed, the concept for generating data roles based on SetIDs
leverages the role template process described earlier in the chapter.

04-ch04.indd 98 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 99

Integrating Oracle Fusion Data Security with Virtual Private Database (VPD) The
Oracle Database has a feature called Virtual Private Database (VPD). VPD allows a
WHERE clause to be appended to a table, view, or synonym. By doing so, the WHERE
clause restricts the rows returned by a SQL query. A PL/SQL function is attached to
the secured object that returns the WHERE clause that gets executed along with the
SQL query. In Fusion Applications, if you wish to leverage the data security defined in
APM on an object, then you need to call fnd_data_security.get_security_predicate()
for that object.

FIGURE 4-16. A data role will be generated for every job in an external role for each row
returned by this SQL query.

04-ch04.indd 99 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

100 Oracle Fusion Applications Development and Extensibility Handbook

The steps for implementing a custom VPD that leverages the APM are

 1. Create a PL/SQL function and call fnd_data_security.get_security_predicate().

A sample piece of code that can be plugged into your VPD function is shown below
FUNCTION get_my_predicate RETURN VARCHAR2 IS
l _predicate varchar2(2000) ;
l_return_status varchar2(2000) ;
begin
 fnd_data_security.get_security_predicate

FIGURE 4-17. Data security and actions applicable for job role

This Instance Sets is one of the conditions that is
defined against database resource GL_LEDGERS.

Parameter value passed is the value returned by the SQL
statement in the Dimension tab. Alternatively, the data set
can be created using the primary key matched to the
value returned by dimension SQL.

04-ch04.indd 100 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 101

 (p_api_version => 1.0,
 p_privilege => 'XX_MY_ACTION_NAME_IN_APM',
 p_object_name => 'XX_MY_TABLE',
 p_grant_instance_type => 'SET',
 p_statement_type => 'VPD',
 x_predicate => l_predicate,
 x_return_status => l_return_status,
 p_table_alias => NULL);
return l_predicate ;
end ;

 2. Attach this function to a VPD policy for table XX_MY_TABLE.

 3. Ensure that XX_MY_TABLE is registered in APM.

 4. Create an action named XX_MY_ACTION_NAME_IN_APM.

FIGURE 4-18. The data roles generated for job roles and dimension values

04-ch04.indd 101 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

102 Oracle Fusion Applications Development and Extensibility Handbook

 5. Create the desired conditions using the tab as shown in Figure 4-20.

 6. Attach the XX_MY_ACTION_NAME_IN_APM to the Condition for a role in
the Policy tab of Database Resource.

NOTE
It must be noted that the data security does not
work out of the box in BI Publisher when you build
a custom SQL-based data model. The reason is that
entity objects and therefore OPSS are completely
bypassed and therefore the data security is not
fetched for the database objects. Therefore you need
to make joins to an object that is secured by a VPD
policy to secure the results of your SQL.

FIGURE 4-19. Reference data sets

04-ch04.indd 102 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 103

For HCM, Fusion Applications delivers a set of secured views that have VPD
policies attached to them. These objects can be identified by running the following
SQL query:

SELECT object_name FROM all_objects
WHERE object_name LIKE 'PER%_SECURED_LIST_V%'
AND owner ='FUSION' AND object_type='VIEW'

You can join any one of these secured views in your SQL data model when
building a BI Publisher for HCM. For non-HCM reporting requirements that are run
off a SQL data model, it is a good practice to check if secured views have been
delivered by Oracle. You can use the following SQL query to see the objects secured
in the Fusion Accounting Hub module.

select * from ALL_POLICIES where object_name like 'XLA%'

On similar lines, you can use this VPD approach to secure objects used in
PL/SQL-based Enterprise Scheduler Service programs.

FIGURE 4-20. Dimension values for SetIDs to generate data roles

04-ch04.indd 103 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

104 Oracle Fusion Applications Development and Extensibility Handbook

Overall Visualization of Relationship Among Security Components Figure 4-21
shows the overall relationship among the application roles, data roles, job roles,
data security policies, and privileges/actions. The menus can be added by using a
custom menu.

Auto Provisioning of Roles in HCM
HCM provides a functionality that allows roles to be provisioned automatically to
the users when certain conditions are met. To enable a role to be automatically
provisioned to users, you need to define a mapping between the role and a set of
conditions. The conditions can be defined based on assignment attributes such as
department, job, system person type, and so on.

The role mapping can support the following:

 ■ Automatic provisioning of roles to users

 ■ Manual provisioning of roles to users

 ■ Role requests from users

 ■ Immediate provisioning of roles

FIGURE 4-21. Overall relationship among security components in Fusion Applications

Oracle Identity Manager Oracle Identity Manager

Create
Users

Job Roles
Abstract Roles

Entitlements
on resources

Data
Roles

Duty
Roles

Duty
Roles

Create Person

HCM

Duty
Roles

Assign

G
en

er
at

es

Data Security
Policy

A
ut

om
at

ic
al

ly
 S

en
t

04-ch04.indd 104 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 105

A role is provisioned to a user automatically if the following conditions are true:

 1. At least one of the user’s assignments satisfies all conditions associated with
the role in the role mapping.

 2. You select the Autoprovision option for the role in the role mapping as
shown in Figure 4-22.

For example, you may want to automatically assign the Expense Manager ANV
UK role to the Employee managers in the ANV UK Operations business unit.
Automatic role provisioning occurs as soon as the user is confirmed to satisfy the
role-mapping conditions, which can be when the user’s assignment is either created
or updated. The provisioning process also removes automatically provisioned roles
from users who no longer satisfy the role-mapping conditions. Therefore, in this
example, if the person is no longer a Manager, then the Expense Manager role will
be automatically removed.

NOTE
The automatic provisioning of roles to users is a
request to OIM to provision the role. OIM may reject
the request if it violates segregation-of-duties rules
or fails a custom OIM approval process. Segregation
of duties is a functionality that can help prevent
fraudulent activities by preventing provision of an
invalid combination of roles to a user.

FIGURE 4-22. Automatically assigning the Expense Manager role to all Employee Managers

04-ch04.indd 105 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

106 Oracle Fusion Applications Development and Extensibility Handbook

Mapping to Oracle
EBusiness Suite Components
The various security components in Fusion Applications map to Oracle EBusiness
Suite as shown in Table 4-3. The Role-Based Access Control follows a positive
approach rather than a negative approach toward role allocation. For example, Oracle
EBusiness suite allows you to exclude certain form functions from a responsibility.
However, Fusion Applications does not have a concept of exclusion of duty roles
from a job role or a data role. As per the RBAC standards, if a user has access to a
role, they should be able to use the features presented by that role.

The duty roles themselves are not attached to the menu item. When defining a
menu item in Fusion Applications using the Manage Menu Customization task, you
simply attach the menu item to a resource. If that resource is available to the user
via their RBAC policies, then that user will be able to see that menu item.

Web Services Security
in Fusion Applications
Oracle Fusion Web Services are set up with internal and external policies. All
internal-facing Web services are protected by Authentication Only policies. These
policies send and accept passwords in clear text, meaning unencrypted. They do not
perform any encryption or signing, and they do not have high security. However, they
are high performance because they don’t do any expensive cryptography operations.
They should be used only for back-end Web services in small internal private networks
that are completely blocked off from the Internet and also blocked off from the
enterprise intranet.

Oracle EBusiness Suite Component Corresponding Fusion Applications Component

Responsibility Data Roles

Top-level menu Job Roles

Submenu Duty Roles

Form Function Privileges and Data Security Policies

TABLE 4-3. EBS to Fusion Applications Comparison for Security Components

04-ch04.indd 106 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 4: Security in Fusion Applications 107

External-facing Web Services
External-facing Web services are protected by WS11 Message protection policies.
The service accepts an encrypted username and password token, or a signed SAML
token, plus the entire message body must be signed and encrypted. The client sends
an encrypted username and password or a signed SAML token. These policies are
very secure; however, they are not high performance because they do expensive
cryptographic operations.

External clients must complete the following steps.

 1. Get the certificate of the service. The certificate is advertised in the Web
Services Description Language (WSDL). To extract the certificate from the
WSDL, perform the following steps.

 a. Save the WSDL to a local file.

 b. Search for the string X509Certificate inside the local file to locate the
certificate. For example,

 <dsig:X509Certificate> MIICHTCCAYagAwIBAgIETBwVYjA ... </dsig:X509Certificate>

 c. Copy this long string framed by the <dsig:X509Certificate> tags into a
text file.

 d. Rename the file.

 ■ If you are using this certificate in a Microsoft client, you can rename
this file with a .cer file extension and use it as a certificate file.

 ■ If you are using this certificate in a Java client, change the text file so
that the certificate is framed by BEGIN and END. For example,

-----BEGIN
MIICHTCCAYagAwIBAgIETBwVYjA ...
-----END

 2. Import the certificate of the service into your client’s trust store. For Java
clients, use keytool -importcert to import this file from the
previous step into your client’s keystore.

 3. [For SAML only.] Generate a client certificate. If your client expects to
perform ID propagation, the client needs to authenticate with SAML
certificates. For this the client needs to have a client certificate for use as a
SAML signing key.

 4. [For SAML only.] Import the client certificate into the trust store of the
service. Take the certificate in the previous step and import it into the
default-keystore.jks file of the service.

04-ch04.indd 107 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

108 Oracle Fusion Applications Development and Extensibility Handbook

Troubleshooting Web Services Grants
One of the common issues when invoking the Web service in Fusion Applications is
the access denied error. Therefore, it is important to figure out the steps involved to
know which privilege is required to invoke a Web service and how to assign the
privilege to the user that will invoke the Web service. The quickest way to find this
information is to navigate to the APM dashboard and open the resource screen as
shown in Figure 4-7 and search for the Web service name using the CONTAINS clause
in the Resource Name field. Next, click the button Find Policies and this will list the
Duty roles that have entitlements to invoke this Web service. Alternatively, you can also
search for the Web description service name in an Excel spreadsheet downloaded from
My Oracle Support note 1460486.1, and in that spreadsheet, you will find the duty
roles and their corresponding external roles. Once you have identified the duty role,
then open the external role that the user has access to, click the Application Role
Mapping tab, and map the identified duty role to this external role.

Summary
In this chapter we aimed to provide an introduction to how Fusion Applications
secures various technical components across different technologies. We learned
how Oracle Fusion Applications leverages Oracle Identity Management and Oracle
Entitlement Server capabilities. We learned about the extra data security features
added by Oracle Entitlement Server via the APM console. Using the concepts in this
chapter, the developers should be able to secure their custom extensions by adopting
the best practices used by the Oracle product development team for securing Fusion
Applications product components.

04-ch04.indd 108 11/12/13 11:53 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
5

Run-time Customization
with Oracle Page

Composer

05-ch05.indd 109 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

110 Oracle Fusion Applications Development and Extensibility Handbook

We talked about various types of customizations and tools available for that
purpose in Chapter 2. We will discuss how to do run-time personalization
and customizations and how to use Oracle Page Composer in this chapter.

End users will use Oracle Page Composer to personalize the application pages, such
as rearranging the content on the dashboard page. The administrator will use Oracle
Page Composer to customize application pages at the appropriate layer for the
enterprise, such as adding new content to the page or changing label or other
properties of the components. The administrator can also use Functional Setup
Manager to modify the Navigator menu for Fusion Applications.

What Can Be Customized
Oracle Page Composer is a run-time tool and you can customize Fusion Applications
pages to do the following using Page Composer.

 ■ Add or remove content from a page using the resource catalog

 ■ Change the page layout

 ■ Modify the component properties that are allowed to be changed such as
label, mandatory, read-only, show/hide, and so on

 ■ Rearrange and rename regions on a page

 ■ Modify the task list

There are many other customization tasks that cannot be performed in the
run-time environment of Oracle Page Composer. You will need to use either CRM
Application Composer or JDeveloper to achieve these customizations.

 ■ Making a page personalizable or customizable

 ■ Editing embedded help text

 ■ Changing ADF Business Components

 ■ Changing ADF Task Flow behavior

 ■ Adding a custom or extended attribute

 ■ Changing mobile pages

05-ch05.indd 110 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 111

Customization Modes
There are three different modes you can use Oracle Page Composer to customize
application pages. These modes are available to users based on the access privileges
for a given application page.

 ■ Design view This mode is the most basic view of the page and provides
WYSIWYG capability to customize the page. This mode is available to every
user when they go to the Personalize Page option. This mode is available to
administrators when they go to customize a page. Design view is mainly used
to manage regions on the UI. Design view allows you to change page layout,
add content on a given page, edit region properties, rearrange regions, or
hide or show regions on the dashboard page. The following illustration
shows the customization region when open in Design view mode in Page
Composer.

 ■ Source view This mode is an advanced mode in which the source
hierarchy of the page is exposed to the user. Source view gives advanced
users finer control over every component of the page. The mode is available
to administrators only when they go to customize a page. This mode is not
available in CRM applications. Using Source view, you can hide or show
components on a page, edit components inside a task flow, edit component
properties, and so on. The Source view is used when you cannot modify
the components using Design view. The following illustration shows the
customization region when open in Source view mode.

05-ch05.indd 111 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

112 Oracle Fusion Applications Development and Extensibility Handbook

 You can switch between Source view and Design view using the View menu
in Change mode as shown here. You can also choose where you want to see
the Source view on your window using the Source Position menu.

 ■ Select mode This is an enhanced Design view mode available to only
CRM applications. This mode is the replacement of Source view for CRM
applications. A CRM applications administrator only has Select mode
available for customizations. This mode allows modifying component
properties. The following illustration shows the customization region when
open in Select mode.

 The Select mode also protects any component property with EL (Expression
Language) and does not allow modifying such properties. You can point and
select a given component in this mode and then choose to modify either the
component or its parent container.

05-ch05.indd 112 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 113

User Personalization
There are two types of end-user personalization in Fusion Applications.

Implicit Personalization
Implicit personalization is a change made by a user at run time and saved implicitly
by the application, such as whether the user last expanded or collapsed a panel. All
the changes made by the user persist for a given user session in Fusion Applications.
However, not all changes are persisted across sessions because this has performance
implications. Fusion Applications enable implicit personalization across sessions for
show detail expand-collapse and resize, portlet expand-collapse, and all operations
to panel and layout customizable components. Some of the Fusion Applications also
enable implicit personalization on other components such as table column rearrange,
show/hide, width, frozen, no-wrap, table filter show/hide, and Rich Text Editor mode.
The components and properties enabled for implicit personalization are defined in
the adf-config.xml file for a given application. This file can be customized using
JDeveloper. Please read Fusion Applications product-specific documentation to
understand which components are enabled for implicit personalization across sessions.

Composer Personalization
Users can make some explicit changes to application pages using Oracle Page
Composer. These are changes made to a page using the Personalization menu. This
option is available to every user, and what an end user can do is very limited. The
user can only add or remove the content and move the regions around but cannot
change the content inside the region. Every dashboard page in Fusion Applications
is enabled for personalization. Some of the work area pages are also enabled for
personalization. Which page is enabled is configured by Fusion Applications and
this setting is defined by the isPersonalizableInComposer property for a given page.
You can use JDeveloper to change this property for any page.

How to Change Page Layout
An administrator can modify the layout of the page that will be available to all users
in the enterprise. We will modify the layout of the home page of Fusion Applications
to rearrange the regions and make space to add new content.

 1. Log in to the Fusion Applications home page with a user who has
administration access.

 2. Create a sandbox as explained in Chapter 2 and use it for this customization.

05-ch05.indd 113 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

114 Oracle Fusion Applications Development and Extensibility Handbook

 3. Click on the Administration menu and select the Customize Workarea Pages
option. This opens up the page in Design view customization mode.

 4. Click the Change Layout button at the top-right corner of the page and select
the layout with three columns and narrow sides.

 5. This changes the page layout and existing content remains in the first two
columns.

 6. You can use the Move Up or Move Down icon on the region to change its
position in the layout.

 7. You can drag and drop a region to another region on the layout as well.

05-ch05.indd 114 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 115

How to Add New Content on a Page
Using Page Composer, an administrator or user can add content that is available in
the resource catalog to the page. There are several types of content that can be
added using Page Composer.

 ■ Oracle Web Center components like activity stream and message boards

 ■ Fusion Applications common components like work list, notifications, and
task lists

 ■ Any portlets that are registered with Fusion Applications

 ■ Analytical reports from the Fusion Applications BI repository

 ■ Other ADF components such as a Web page, hyperlink, image, static text, or
any HTML markup

 ■ HCM components such as people connection, organization chart, and
person search

In this section, we will discuss how to add some of this content to a page.

 1. Click the Add Content button in the third column on the page layout.

05-ch05.indd 115 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

116 Oracle Fusion Applications Development and Extensibility Handbook

 2. This will show a dialog where you can pick the content to be added on the
region on the page. Click the Add link for Activity Stream as shown in the
following illustration.

05-ch05.indd 116 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 117

 3. Click the Add link for Message Board. Click the Close button. This will add
these two components on the page as shown here.

 4. Click the Add Box Below button in the second column on the page layout.
This will add another region where you can add new content.

 5. Click the Add Content button in this new region in the second column. Click
the Components folder to see a list of available components that can be
added on the page.

05-ch05.indd 117 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

118 Oracle Fusion Applications Development and Extensibility Handbook

 6. Click Add for Web Page, HTML Markup, and click three times for Hyperlink.
Click the Close button. This will add these components on the page.

 7. Now we will change the hyperlink to navigate to the Opportunity
Management, Employee Management, and Receivables applications.

 8. Hover toward the right-hand end of the hyperlink as shown in the following
illustration to edit the hyperlink properties.

05-ch05.indd 118 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 119

 9. This will show the Hyperlink Component Properties dialog. To modify the text
shown for the hyperlink, click the down arrow for the Text property and select
the Expression Builder option.

 10. In the Edit Text dialog, change the text to Opportunity Management. Click OK.

 11. Specify the Destination as the opportunity home page.

http://<CRM host>:<port>/sales/faces/mooOpportunityHome

 12. Modify the style of hyperlink to set Color Red, Font Size Large, and Font Style
Bold.

 13. Modify the other two hyperlinks also to point to the Employee and
Receivables home page.

http://<HCM host>:<port>/hcmCore/faces/PersonSearch
http://<FIN host>:<port>/receivables/faces/TransactionsWorkArea

 14. After all these changes, you can click the hyperlinks to directly navigate to
those home pages instead of using the Navigator menu. The page looks like
the following illustration with these changes.

05-ch05.indd 119 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

120 Oracle Fusion Applications Development and Extensibility Handbook

 15. Click the Edit icon for the Web Page region and specify the source as
http://www.bing.com/.

 16. Use the Delete icon on the People Connection region to remove that from
the first column.

 17. Click the Add Box Below icon in the first column of the layout to add a
region to move some content to. Drag and drop all three hyperlinks and the
HTML Markup to this region.

 18. Click the Edit icon for HTML Markup region. We will add iframe markup to get
an RSS feed from Yahoo News using the free widget service rssinclude.com.
Set the value attribute using Expression Builder to the following markup.

<iframe width="400" height="400" style="border:none;"
src="http://output49.rssinclude.com/output?type=iframe&
id=486118&hash=7ad36b404d0ffc5f6ab1cb034b22221f"></iframe>

 19. Click the Close button on the top-right corner of the page from the
Customization region. This shows the home page with all the content added.

 20. Click the Add Content button in the second column on the page layout.
Click the Reports and Analytics folder to navigate to the BI repository to add
a new report on the page.

05-ch05.indd 120 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 121

How to Customize Fields
The most basic component on a page is a UI field component such as input text,
output text, choice list, or a table with one or more columns. You can customize the
field properties; for example, you can hide or show a field, make a field read-only or
editable, make a field mandatory, and change the label. For table columns, you can
customize properties like hide or show column, set width, change label, and make
the column sortable. You can customize all these in both Source view and CRM Select
mode. We will discuss how to achieve all these customizations in both modes in this
section. To use Select mode, we will customize the Opportunity Management page,
and to use Source view, we will customize the expense creation page.

How to Use Select Mode to Customize Fields

 1. Log in to Fusion Applications with a user who has the Sales Administrator
role. Go to the Opportunity home page using the Opportunities option in the
Navigator menu under Sales. Click the Create Opportunity link from the Task
pane. Create and use a sandbox from the Administration menu using Manage
Sandboxes. Click Customize Opportunities Pages in the Administration menu
to customize fields on the Create Opportunity page. Choose the customization
layer as Job Role and value as Sales Representative.

05-ch05.indd 121 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

122 Oracle Fusion Applications Development and Extensibility Handbook

 2. This shows the Create Opportunity page in Select mode for customization
where you can select the fields you want to customize.

 3. We will make the Primary Contact attribute mandatory for sales representatives.
Select the Primary Contact field and click the Edit Component link that shows
up. This will show the Change Property dialog for the Primary Contact
attribute. Click the down arrow for a required field and select Expression
Builder as shown in the following illustration.

 4. Change the expression to true and click OK.

 5. This will now show the Primary Contact field as mandatory in the Property
dialog.

 6. Click OK in the Property dialog and this will make the Primary Contact field
mandatory on the page.

05-ch05.indd 122 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 123

 7. We will make the Close Date field read-only for sales representatives. Select the
Close Date field and go to Edit Component. Check the Read Only check box.

 8. Click OK and this will make the Close Date field read-only on the UI.

 9. We will now modify the Edit Opportunity page for other field and table
column customizations. Go to the Edit Opportunity page by drilling down to
any opportunity. Once in Select mode, go to the Edit Component dialog for
the Competitors field. Click Select Text Resource from the drop-down menu
for the Label property.

05-ch05.indd 123 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

124 Oracle Fusion Applications Development and Extensibility Handbook

 10. Provide details for the new label and give the Display Value as Competing
With.

 11. Go to the Edit Component dialog for the Enable Social Networking field and
uncheck the Show Component property.

05-ch05.indd 124 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 125

 12. Select the Currency column from the Revenue Items table and go to
Component Properties. Check the Sortable check box.

 13. Select the Estimated Price column from the Revenue Items table and go to
Component Properties. Change the width of the column to 100.

05-ch05.indd 125 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

126 Oracle Fusion Applications Development and Extensibility Handbook

 14. This will modify the Opportunity edit page with a new label and removed
fields and modified look for the table as per the preceding customizations.

How to Use Source View Mode to Customize Fields
If you are using a non-CRM application such as HCM, SCM, or Financials, you will
not see Select mode for customizing using Page Composer. These applications expose
Source view mode for the pages that allow customization. You can do all the functions
using Source view mode and even more dramatic changes because it allows you to
see the full anatomy of the underlying page. It also exposes you to a great danger of
making mistakes and getting into an unrecoverable situation where you will have to
do MDS clean-up to get rid of your wrong customization. Details about using Source
view for attribute-level customizations are the same, as we will discuss in the next
section where you do regional-level customizations in Source view mode.

How to Customize Regions
A region is a building block for any page. Various fields on a given page are
organized under regions to group the fields logically. The regions are organized as
tabs or stacked on a given page. You can show or hide a given region or tab, rearrange
the regions or tabs, rename a region or tab, or rearrange attributes within the region.
You need to use Source view mode to do region customizations. The CRM Select
mode supports only fields rearranged in a given region and does not support any
other region customization.

 1. On the Edit Opportunity page, select any attribute and click the Edit Parent
Component link to customize a given region as shown in the following
illustration.

05-ch05.indd 126 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 127

 2. This shows the Edit Region Properties dialog where you can move any field
up or down to rearrange them or show or hide a field. Make the changes as
shown here.

 3. Click OK to save the changes and the page will change the layout as selected
in the Edit Parent Component dialog.

05-ch05.indd 127 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

128 Oracle Fusion Applications Development and Extensibility Handbook

 4. Log in to Fusion Applications with a user with the HCM Administrator job
role. Go to Workforce Structures from the Navigator menu under Workforce
Management. Click the Manage Jobs tab and search for a job. Click on a
job from the search results to drill down to get to the Edit Job page. Go to
Customize This Page and choose Site Layer. Select Source view mode. Move
the source pane to the left side using the Source Position option from the
View menu. Click on the Job region and you will see a dialog asking for
permission to edit the task flow. Click Edit in the dialog.

05-ch05.indd 128 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 129

 5. This will show the Job task flow Source view where you can visually see the
regions and attributes on that page and customize it.

05-ch05.indd 129 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

130 Oracle Fusion Applications Development and Extensibility Handbook

 6. Select the Basic Details region and right-click to see options for customization
as shown in the following illustration. You can delete using the Delete menu
option or hide the region using the Hide Component menu option. You can
use the Expand and Expand All Below menu options to expand the source
view to see all components on the page. You can use the Show as Top menu
option to make the current region as top in Source view so that it is easy to
see the Source view for that part of the page and customize that particular
region.

 7. Click the Edit menu option to modify this region property. This shows the
Component Properties dialog where you can modify display options. For this
showDetailHeader region, modify the text property by adding a new text
from resource bundle to “Basic Information.”

 8. Right-click on the Valid Grades region and click Cut from the Customization
menu.

 9. Now select the Job Description region and select the Paste Before option from
the Customization menu. This will move the Valid Grades region above Job
Description and below the Basic Information region.

05-ch05.indd 130 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 131

 10. Now select panelTabbed: above region, right-click, and edit.

 11. This opens up the Component Properties dialog where you can modify the
properties of this tabbed region.

 12. Move the Profiles tab to second place and rename to Applicable Profiles.
You can add a new tab using the Add Tab button and remove the existing tab
using the Delete Tab button.

05-ch05.indd 131 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

132 Oracle Fusion Applications Development and Extensibility Handbook

 13. You can use the Display Options tab in the Component Properties dialog to
customize display options for the tabbed region. Modify the tab display option
(Short Desc) to both in order to show tabs at the top and bottom of the page.

 14. Save the changes and return to Design mode and you can see the changes
on the run-time page.

05-ch05.indd 132 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 133

How to Customize the Task Pane
The Task pane is a standard region on any Fusion Applications page. The Task pane
gives quick access to frequently used task flows or pages to users for a given work
area. You can customize the Task pane using Source view. We will customize the
Task pane for the Workforce Structures work area in this section. Navigate to the
Workforce Structures work area page using the Navigator menu.

 1. Once in Source view mode for customization, click the Task pane and edit
the task flow. This will show the Task pane region. Click on the Edit Task
Flow region under Tasks.

05-ch05.indd 133 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

134 Oracle Fusion Applications Development and Extensibility Handbook

 2. Select panelFormLayout for the Task pane and click Edit to open the Edit Task
Pane dialog.

 3. In the Component Properties dialog, go to the fourth tab, Task List Task
Properties, which shows the Task pane structure.

05-ch05.indd 134 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 135

 4. You can use the menu icons to customize the Task pane list. Use the Edit
icon to modify the properties of a given task entry.

 5. When you modify or define a new task, the following important properties
must be specified, and the behavior of the task depends on the property
specified.

 ■ Web Application Name of the application from the list of values.

 ■ Focus View ID focusViewId of the target page as specified in the adfc-
config file of the Web application.

 ■ Label The name for the task entry.

 ■ Destination Specify this only if this is a direct URL link and not a
navigation to Task Flow.

 ■ Task Type The value for this attribute controls the behavior of this task
entry. You can specify this only for new tasks and cannot modify it for any
existing task.

 ■ defaultMain This means the task flow will open in the Local Area tab.

 ■ dynamicMain This adds the task flow as the default tab in the local area.

 ■ taskCategory This adds the entry as a nonclickable Task pane category
under which you can add more links.

 ■ defaultRegional This adds the task flow as another pane in the
regional area.

 ■ Taskflow ID This is the fully qualified task flow name that you want to
invoke when you click this Task pane entry.

05-ch05.indd 135 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

136 Oracle Fusion Applications Development and Extensibility Handbook

 6. You can use the Duplicate icon to copy a given Task pane entry. This will
copy existing metadata for the task and you can modify to make changes.

 7. You can use the Delete icon to completely remove any entry. Select
Locations and click Delete.

 8. You can use the Show or Hide Glass icon to show or hide any task entry.
Select the Manage Departments task and hide it.

 9. You can use the Insert Before or Insert After or Insert Child icons to add a
new entry in the Task pane. Select the Copy of Compare entry and add a
child pane inside it. Give the destination as www.google.com. Rename the
Copy of Compare entry to Web Sites. After saving all changes, the page will
reflect the changes made.

How to Reset Customization
We have gone through many customization examples in this chapter. Page Composer
provides a very easy way to reset the customizations and go back to the original
state of the page. This is handy in case the customization went wrong, or you made
a mistake and the results are not what you expect and you want to go back to the

05-ch05.indd 136 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 137

original state quickly. Each customization mode provides different ways to get back
to the original state.

If you are customizing in Source view, there is a Reset Task Flow button in the
Customization menu bar that resets the content of the task flow to its original state
as shown in the following illustration.

If you are customizing in CRM Select mode, you can see what properties are
modified via a blue dot change indicator in the Component Properties dialog. The
Reset All button allows you to reset the customizations and revert the component to
its original state as shown here.

05-ch05.indd 137 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

138 Oracle Fusion Applications Development and Extensibility Handbook

How to Customize the Navigator Menu
The Navigator menu in Fusion Applications is the main entry point to all the
dashboard and work area pages. The Navigator menu is available in the global area
of the UI Shell page and is accessible all the time. You can customize the Navigator
menu using the Manage Menu Customizations task from Functional Setup Manager
accessed by using the Setup and Maintenance link from the Navigator menu under
the Tools category. Using this task, you can customize the Navigator menu such as
adding or deleting a custom group, adding or deleting custom items, hiding or
showing standard groups and items, editing any group or menu item, and so on.
You cannot add a top-level linkable menu item using this task, cannot move existing
nodes, and cannot delete items delivered with Fusion Applications. You must hide
the standard menu items and copy over to a different group to rearrange. Any
customization done to the menu items will honor the function security for the
logged-in user. The menu items are visible only if the user has access to the page.
We will use the Navigator menu to add a new group to access several work areas as
a top node in the menu. The customizations are done only at the Site level.

 1. Navigate to the Setup and Maintenance work area using the Navigator
menu.

 2. Search for the task Manage Menu Customizations and click the Go to Task
button. This will launch the page to customize the Navigator menu. You use
standard buttons to add groups or items to the menu.

05-ch05.indd 138 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 5: Run-time Customization with Oracle Page Composer 139

 3. Select the Marketing node and click Insert Above. This will show the dialog
to enter a group name. Enter Frequent as the name for the new menu group.

 4. Select Frequent and Insert Item Child to add nodes under this new group.

 5. Use this option to add Leads, Opportunities, Customers, Setup and
Maintenance, File Import, and Manage Users nodes under it. Look at existing
standard nodes for these work areas to see what values should be specified.

 6. Hide these nodes from the standard Navigator menu list using the Hide icon.

 7. Save the changes and the Navigator menu now looks like the following
illustration.

05-ch05.indd 139 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

140 Oracle Fusion Applications Development and Extensibility Handbook

Summary
In this chapter, we discussed various modes of run-time customizations such as
Design mode, Source mode, and Select mode, and what can and cannot be
customized in each mode. We talked about how to do field-level customizations
and how to do region-level customizations. We discussed how to do Task pane
customization and Navigator menu customizations. We explained how to get back
to the original state of a page when customizations go wrong by resetting the
changes.

05-ch05.indd 140 11/12/13 11:58 AM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
6

Extending CRM with
Oracle Application

Composer

06-ch06.indd 141 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

142 Oracle Fusion Applications Development and Extensibility Handbook

Oracle Application Composer is a tool available for run-time customization
and extension for CRM application sales, marketing, customer center, CRM
common objects, and sales catalog (order capture). You can extend standard

objects for these applications that are enabled for customization as well as define
new custom objects for these applications. Application Composer is available only
to CRM products at this point. All CRM objects are not enabled for customization in
Application Composer; please read the product-specific documentation for more
details on which objects are enabled for Application Composer in CRM. Application
Composer is a tool that allows business users, administrators, and developers to
customize and extend CRM application objects in a run-time environment. You can
modify the standard behavior of applications; for example, you can add new attributes
to objects and expose them on the application UI, import and service artifacts, define
business events and construct workflow with those events, and define additional
validations and triggers to meet business requirements.

Application Composer Overview
You can access Application Composer with a user with the CRM administrator role
using the Application Composer link from the Navigator menu under the Tools
category as shown in Figure 6-1.

FIGURE 6-1. Application Composer Navigator menu link

06-ch06.indd 142 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 143

The Application Composer home page gives you navigation access to every
feature of Application Composer as shown in Figure 6-2.

Let’s understand the meaning of each of these features and then we will go into
details of how you go about using these features in the following sections.

 ■ The application choice list shows the name of the CRM application context
where you are customizing objects. You can switch the value to see objects
for a specific application.

 ■ Standard Objects allows you to manage out-of-the-box extensible objects
for a given application.

 ■ Custom Objects allows you to manage custom objects created by the
deploying company for a given application.

 ■ Relationships allows you to manage standard and custom relationships
between objects for a given application.

 ■ Role Security allows you to manage security rules for custom objects for
given application.

 ■ Custom Subject Areas allows you to manage custom subject areas for your
custom objects for a given application.

 ■ E-Mail Templates allows you to manage e-mail notification templates that
can be used in the object workflows for a given application.

FIGURE 6-2. Application Composer list of features

06-ch06.indd 143 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

144 Oracle Fusion Applications Development and Extensibility Handbook

 ■ Import and Export allows you to manage the generation of import and
export artifacts for your customizations to standard objects.

 ■ Object Workflows allows you to define and manage business events and
workflows in response to those events for standard and custom objects for a
given application.

 ■ Business Processes allows you to build and manage business processes for
standard and custom objects for a given application.

 ■ Global Functions allows you to build global functions written in Groovy
language that can be used by customizations and extensions for standard
and custom objects defined in scripting such as validations or triggers.

 ■ Run Time Messages shows you messages logged by the Groovy scripting at
run time, if there were any log messages in the script for a given application.

 ■ Mobile Pages allows you to manage and configure extensions and
customizations for mobile pages for a given standard or a custom object in a
given application.

 ■ Personalization shows you personalization done by an end user and allows
the administrator to reset personalizations in a given application.

Understanding Object Structure
in Application Composer
The Application Composer regional area allows you to explore and navigate standard
and custom objects and manage various object-specific features. When you expand
the Standard Objects node, it shows all the out-of-the-box objects that are enabled
for extension for a given application. The object list shows both top-level objects as
well as child objects of top-level objects, as shown in Figure 6-3. Here Opportunity
is a top-level standard object and Opportunity Contact is a standard child object of
Opportunity. The local area shows the list of standard objects.

When you expand the Custom Objects node, it shows all the custom objects
created using Application Composer for a given application. The list shows both
top-level custom objects and custom child objects for standard objects and custom
top-level objects. When you click on any object and expand it, the Application
Composer shows the object details in the local area and links to customize the object
details in the object tree in the regional area as shown in Figure 6-4.

The local area shows general object information such as label and view objects
and other information such as child objects and related objects. We will discuss how
to manage these in later sections. The regional area object tree shows links to extend

06-ch06.indd 144 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 145

FIGURE 6-3. List of objects in Application Composer

FIGURE 6-4. Customization options for an object in Application Composer

the object. Links that show up for any given standard object depend on the features
enabled for that standard object by the Fusion application out of the box. This cannot
be customized. Read product-specific documentation to understand which features
are enabled for which standard object. The custom objects support all the features in
Application Composer. Following is a list of features supported in Application

06-ch06.indd 145 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

146 Oracle Fusion Applications Development and Extensibility Handbook

Composer for any object, and we will discuss in detail how to use all of these
features in following sections.

 ■ Fields allow you to customize standard fields and add new custom attributes
to the model for the object.

 ■ Pages allow you to customize and extend application pages enabled for
extension for a given object.

 ■ Actions and Links allow you to add buttons and links and define target
actions for them on the application page for a given object.

 ■ Server Scripts allow you to add field- or object-level validation, and to
trigger and define object functions that can be used for scripts.

 ■ Saved Searches allow you to define a new saved search for an object that
will be visible to all users of the application on the object search page.

How to Add a New Field to an Object
Application Composer allows you to add a new attribute or field to a standard or
custom object. When you add a new field, it gets added to the physical data model,
to the object model such as EO, VO, and to Web services. You will use Application
Composer to add new fields when the standard fields do not meet your business
requirements. In this section, we will add three new attributes to an opportunity object.

 1. Top Opportunity This field is auto-calculated if the opportunity revenue is
> 100000.

 2. Opportunity Type This is a fixed List of Values field to categorize the
opportunity at a high level.

 3. Opportunity Reference This is a text field to cross-reference this opportunity
in a different system.

Create a sandbox, go to Application Composer, and choose the Sales application
to see all standard objects available in the sales application. Expand the Opportunity
node under standard objects and click the Fields link to see the attributes available
for the opportunity object.

The Standard tab shows out-of-the-box fields and the Custom tab shows any
custom attributes added using Application Composer to the opportunity object. Let
us now add the custom attributes to the opportunity object.

06-ch06.indd 146 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 147

 1. Click the Create icon in the Custom tab. This will bring up the Create
Custom Attribute dialog as shown in the following illustration where you first
choose the type of custom field you want to add.

 2. Most of the field types are self-explanatory. There are a few special field
types supported by Application Composer that you can use based on your
business needs.

 a. Percentage type allows you to capture percentage values for the field.

 b. Currency type allows you to capture amounts of data.

 c. Dynamic Choice List allows you to build a list of values where the list
is from a related object.

 d. Formula field allows you to specify an expression that calculates
the field value and cannot be updated by the end user. The value is
automatically updated by the application based on the expression.

06-ch06.indd 147 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

148 Oracle Fusion Applications Development and Extensibility Handbook

 3. Select Formula and click the OK button to create the Top Opportunity
field. Specify the display label as Top Opportunity and Depends On field
as Revenue because this field will be recalculated every time revenue on
opportunity is updated, as shown in the following illustration.

 4. Click the Next button to configure the expression for this formula field. Specify
the formula to return Y if revenue is 100000 as shown in the following code.
Click Submit to create this formula field.

Revenue >= 100000 ? "Y" : "N"

 5. Click Create again and select Choice List (Fixed) as field type and click
OK to define the Opportunity Type attribute. On the Create Fixed Choice
list page, click the Create icon for the Lookup Type field under the List of
Values region. This will launch the FND lookup creation screen where you
can define the lookup types and codes to be used by this fixed choice list.
Define the values as Hardware, Software License, Support, Service, and
Consulting, as shown in the next illustration.

06-ch06.indd 148 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 149

 6. You can optionally specify a default value for this attribute to one of the lookups
by picking it from the Fixed Value field under the Default Value region.

 7. Click the Create icon again to create and select the Text field type. Give the
label as Opportunity Reference Number and mark it as Indexed Field so that
it can be used for efficient search as shown in the following illustration.
Click Save and Close to create this field.

06-ch06.indd 149 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

150 Oracle Fusion Applications Development and Extensibility Handbook

 8. This completes adding the three fields to the opportunity object. These fields
are now available for you to add to the opportunity UI pages and use in other
Application Composer features such as object workflow, validations and
triggers, search, and so on. When the sandbox is published, the attributes are
also made available in the Web service. You cannot test the Web service
with custom attributes within a sandbox.

How to Add a New Field
to an Object Page
Once you have defined custom fields for an object, you can now add these fields to
application pages for that object. Each standard object enables some or all of the
object pages in Application Composer. What page is made available for customization
in Application Composer is preconfigured by Fusion Applications and it cannot be
changed. Fusion Applications pages are built on standard patterns and most of the
object pages follow a similar pattern. Typically standard objects have a list or summary
table page, create page, and edit summary form. If the object has any standard child
object, the detail tabs for those child objects are also available in Application
Composer. Click the Pages link under Opportunity object to see the application
pages available for customization for opportunity object as shown in the following
illustration.

06-ch06.indd 150 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 151

In addition to the application or enterprise pages, you can also customize the
mobile and tablet pages for an object if they are enabled for those devices. We will
now add the new attributes to the summary list table and edit page for the
opportunity.

 1. Click the Edit Summary Table link to add these attributes to the opportunity
list table. Select the three custom attributes from the Available Fields shuttle
to the Selected Fields shuttle. Move the two fields up as shown in the
following illustration. Click Save and Close to save the customization.

 2. From the Navigator menu, select Opportunities under Sales to go to the
opportunity home page. In the opportunity search result list, you can see new
attributes.

06-ch06.indd 151 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

152 Oracle Fusion Applications Development and Extensibility Handbook

 3. Go back to the opportunity pages in Application Composer and click
the Edit Summary Form link to customize the opportunity edit page to
add these attributes. Add Top Opportunity and Opportunity Type in
the default summary region and Opportunity Reference Number field to the
detailed summary region shown in the following illustration. You can use the
Move Up or Down arrow to move the fields to the right place on the page.
Click Save and Close to save the customization.

 4. From the Navigator menu, select Opportunities under Sales to go to the
opportunity home page. Search for an opportunity and drill down to the
edit page where it will show the custom attributes as in the following
illustration. Note that the Top Opportunity is “N” because the revenue for
this opportunity is 80000.

06-ch06.indd 152 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 153

 5. Update the opportunity reference number to MYSYS101 and update
the revenue line for the opportunity such that the total revenue will be
> 100000. This will now change the Top Opportunity formula field to Y.

 6. Click Save and close to go back to the search page. Click the Advance
button. Click the Add Fields button and you will see that the new custom
attributes are available for search, as shown in the following illustration. You
can add these attributes and use them for the search.

06-ch06.indd 153 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

154 Oracle Fusion Applications Development and Extensibility Handbook

How to Define
Server Scripts for an Object
Server scripts are a powerful feature that allows you to customize the business logic
for a given object. The scripts are written in Groovy, which is a standard dynamic
scripting language for Java platform and supported by ADFbc. The Groovy script can
be a very simple one-line expression, or it could be multiple lines-n-long or multiple
pages-n-long code for complicated business logic. There are many places in
Application Composer where you may need to write a Groovy script. The scripts
fall into three broad categories.

 1. Field-level scripts allow you to do the following:

 a. Calculate a formula field’s value

 b. Calculate a default value for a custom field

 c. Make a custom field conditionally required

 d. Make a custom field conditionally updateable

 e. Define a validation rule for any field

 2. Object-level scripts allow you to do the following:

 a. Define a condition for an object workflow

 b. Define a validation rule for the object

 c. Define triggers to extend default processing for the object

 3. Generic scripts

 a. Reusable code for object functions

 b. Utility code in global functions

Understanding Expression Builder
Application Composer provides an Expression Builder where you can visually write
the script. You can also write the script code directly in the scripting editor. Every
place where you can write a script has the ability to launch Expression Builder, as
shown in the following illustration.

06-ch06.indd 154 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 155

The Functions tab shows the standard Groovy functions available for scripting.
You can select a function and click the Insert button to pull the expression into your
script. The Fields tab shows all the fields available for the object and all the child
collections available for a given row of the object. This list is generated based on the
View object and its view links to child objects as defined by Fusion Applications out
of the box and Application Composer. You can select a field and click the Insert
button to pull that field into your script as shown in the following illustration. At
run time, the value of that field is substituted for evaluation in the script.

06-ch06.indd 155 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

156 Oracle Fusion Applications Development and Extensibility Handbook

When you are writing the script in the context of a field and not an object, the
Keywords tab shows you available keywords to inspect the value of that field as
shown here. You use oldValue and newValue to reference the field’s values before
and after the modification was done.

The script editor allows you to add standard operators to help speed up writing
the script such as >, <, >=, <=. You can use the Erase button to clear the script editor
and the Validate button to check the syntax of your script.

Calculate a Formula Field’s Value
We defined a custom attribute Top Opportunity, which is a formula field. We defined
a Groovy expression for this field that checks if the revenue of the opportunity is
100000 or more and returns the value of this field to Y or N based on this. You can
put any other complicated logic in the formula field based on your business needs.

Calculate the Default Value for a Custom Field
When you create new data for a given object, the attributes do not have any value
and the user must specify the field values on the UI or in service. When you define
custom fields, you can specify a default value for the attribute that is put in the
attribute when a new row is created. The user can modify the value in the UI or
overwrite it by passing a different value in the service. You can either specify a fixed
literal value as default or define a Groovy expression. Let us define a new custom
field called Follow-up Date on Opportunity whose default value will be Opportunity
Close Date + 30.

 1. Go to the Opportunity object in Application Composer and define a new
Date field with label Follow-up Date.

 2. Click the Expression radio button under the Default Value region and click
the Expression Builder icon.

 3. From the Fields tab, select the Close Date attribute and click the Insert icon
to pull that attribute in the script. Modify the expression to add 30 days to it
as shown in the following example.

EffectiveDate == null ? today() + 30 : EffectiveDate + 30

06-ch06.indd 156 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 157

 4. Save the attribute and add it to the Create Opportunity page using the Pages
link in Application Composer under the Opportunity object as shown in the
following illustration.

 5. Navigate to the Opportunity home page and click Create Opportunity. This
will show the Follow-up Date as today’s date + 30.

Make a Custom Field Conditionally Required
Custom fields are not required by default. You can make a custom field always
mandatory by checking the required box under the Constraints region for a given field.

You can use the Expression Builder to define an expression to conditionally make
this field required. We will make the Opportunity Type field mandatory for top
opportunities.

 1. Go to the Fields for Opportunity object in Application Composer. From
the Custom attributes, click the Opportunity Type field to edit it. Click the
Expression Builder icon next to the Required field under the Constraints region.

 2. Select the Top Opportunity field and click the Insert button to pull the
attribute into the script. Modify the script to compare the value to ‘Y’ as
shown in the following example so that the required property will be set for
top opportunities.

TopOpportunity_c == 'Y'

06-ch06.indd 157 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

158 Oracle Fusion Applications Development and Extensibility Handbook

 3. Go to the opportunity home page using Navigator and drill down to an
opportunity that is not a top opportunity. The Opportunity Type field is not
required at this point.

 4. Now modify the revenue to > 100000 so that this opportunity becomes
the top opportunity. Change the opportunity type to NULL and save. This
will make the Opportunity Type field mandatory as shown in the following
illustration. Note that if the field is a text field and not a fixed choice list, you
will get a client-side mandatory error and not an error from the server side.

Make a Custom Field Conditionally Updateable
Whether a custom field is editable or not is controlled by its Updateable property.
All custom fields are updateable by default. You can uncheck the Updateable box
under the Constraints region for a field to make it noneditable always. You can use
Expression Builder to provide a script that conditionally makes the field updateable.
Let us make the Opportunity Reference Number field updateable only if the
opportunity type is Hardware.

 1. Go to the Fields for Opportunity object in Application Composer. From
the Custom attributes, click the Opportunity Reference Number field to edit
it. Click the Expression Builder icon next to the Updateable field under the
Constraints region.

 2. Select the Opportunity Type field and click the Insert button to pull the
attribute into the script. Modify the script to compare the value to ‘HW’ as
shown in the following example so that the Updateable property will be set
for open opportunities.

OpportunityType_c == 'HW'

 3. Select the Depends On field as Opportunity Type so that when you
change status, the UI field reflects the new state as shown in the following
illustration.

06-ch06.indd 158 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 159

 4. Go to an opportunity home page and edit an opportunity. You can modify
the Opportunity Reference Number field if the opportunity type is Hardware.

 5. Update an opportunity type to something else and the Opportunity Reference
Number field is not editable.

Define a Validation Rule for a Field
You can define a new field-level validation rule using Application Composer for both
standard field and custom fields. To define a new validation rule, click the Server
Scripts link for any object, as shown here.

06-ch06.indd 159 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

160 Oracle Fusion Applications Development and Extensibility Handbook

The field-level validation fires when the value on a field is being set. When the
validation is executed, the value of the field is not yet set. The validation rule must
return true for the success case and false for the failure case. If the rule returns true,
the value of the field is set to its new value if all the field rules return true. If the rule
returns false, the error message configured in the validation rule is thrown and the
field value remains as it was before the validation was fired. You can use the oldValue
keyword to access the old value of the field and the newValue keyword to access the
new value of the field being set in the validation rule. You define a field-level validation
rule when the rule is independent of values for other fields and should be executed
only when setting the value for a given field. Let us define a validation rule to
allow only alphanumeric values for the Opportunity Reference Number field.

 1. Click the Create icon from the Field Rules table under the Validation Rules tab.

 2. Select Field Name as Opportunity Reference Number. Specify the Rule Name.
In the script editor, specify a regular expression to match alphanumeric values
as mentioned in the following example. Specify the Error Message “The
Opportunity Reference Number value must be alpha numeric without
space or any other special character.” The rule looks like the one shown in
Figure 6-5.

import java.util.regex.Matcher
import java.util.regex.Pattern
def pattern = ~/[A-Za-z0-9]*/
pattern instanceof Pattern
return pattern.matcher(newValue).matches()

 3. Click Save and Close to save the rule.

 4. Go to the opportunity home page using Navigator and drill down to an
opportunity edit page. Enter the Opportunity Reference Number as
ABC_123 and click the Save button. This will throw a field-level validation
error message as shown in the following illustration

 5. Modify the value to ABC123 and click the Save button; the changes are
saved without any errors.

06-ch06.indd 160 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 161

Define a Validation Rule for an Object
The object-level validation rule fires during the validation phase of the entity row. The
validation rule must return true for the success case and false for the failure case. If
all the object-level validation rules return true, the object row will be saved to the
database. If the rule returns false, the error message configured in the validation rule
is thrown. You define an object-level validation rule when the rule is dependent on
multiple fields so that the validation is correctly evaluated irrespective of the order in
which field values are assigned. Let us define a validation rule that for an open
opportunity, a sales account must be mandatory if it is a top opportunity.

 1. Click the Create icon from the Object Rules table under the Validation
Rules tab.

FIGURE 6-5. Defining a field validation rule

06-ch06.indd 161 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

162 Oracle Fusion Applications Development and Extensibility Handbook

 2. Give the rule name as MandatorySalesAccount. From the Fields tab, pick the
necessary attributes and build the script as shown in the following example
to return false when the sales account is null for the top open opportunity.
Provide the error message “Sales Account is mandatory when Opportunity
Status is Open and it is Top Opportunity,” as shown in Figure 6-6.

if (StatusCode == 'OPEN' && TopOpportunity_c == 'Y') {
 if (TargetPartyId == null){
 return false;
 }
}
return true;

FIGURE 6-6. Defining an object validation rule

06-ch06.indd 162 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 163

 3. Click Save and Close to save the rule.

 4. Go to the opportunity home page using Navigator and drill down to an
opportunity edit page. Modify an open top opportunity and save without the
sales account field. This will throw an object-level validation error message.

Reusable Code for Object Functions
We can define certain routines for a given object in object functions and call these
routines from various scripts as applicable. You can define object functions from the
Object Functions tab when you go to the Server Scripts link for any object.

 1. Click the Create icon from the Object Functions tab.

 2. Provide the function name openOpportunity, return type void, and the
function body that sets the Opportunity Status field to OPEN as shown
in the following illustration.

setAttribute("StatusCode", "OPEN")

 3. Click Save and Close to save the object function.

06-ch06.indd 163 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

164 Oracle Fusion Applications Development and Extensibility Handbook

Utility Code in Global Functions
You can define a reusable utility script or code in global functions that you can
access across all objects. You can define these functions via the Global Functions
link under the Common Setup regional area pane.

 1. Click the Create icon from the Global Functions table.

 2. Provide the function name log, return type void, parameters message of
type String, and the function body as “println(message)” as shown in the
following illustration. This function simply logs the message passed in as a
parameter. This is useful when you have a complicated and long script and
you need to debug it at run time.

println(message)

 3. Click Save and Close to save the global function.

 4. Similarly, define another global function getRegionForCountry to derive the
world region based on country code. We will use this function in later

06-ch06.indd 164 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 165

sections. The function takes countryCode as input parameter and returns the
region for that country as String.

if(countryCode == 'US' || countryCode == 'CA'
|| countryCode == 'MX')
 return 'NA'
else if(countryCode == 'GB' || countryCode == 'FR'
|| countryCode == 'IT' || countryCode == 'DE'
|| countryCode == 'GR' || countryCode == 'SA'
|| countryCode == 'YE')
 return 'EMEA'
else if(countryCode == 'JP' || countryCode == 'SG'
|| countryCode == 'HK' || countryCode == 'PH'
|| countryCode == 'KP' || countryCode == 'KR')
 return 'APAC'
else if(countryCode == 'BR' || countryCode == 'RU'
|| countryCode == 'IN' || countryCode == 'CN')
 return 'BRIC'
else
 return 'OTHER'

Programmatically Access View Objects in Scripting
Application Composer provides a way to access a standard or custom view object
instance to programmatically access the rows from that View object. This function is
called newView and it takes the name of the View object as argument.

This is a very powerful function that allows you to access unrelated objects in
scripting. To access standard view objects, you need to know the exact name of the
view object made available for scripting via the newView function. View objects for
custom and standard objects in Application Composer are available for scripting by
default. Any other view objects made available for script are defined by Fusion
Applications and you cannot customize that. Please read product-specific
documentation to know which view objects are available for scripts in a given
application. Once you get the view object instance using newView, you can write
Groovy code to access the view object methods on that instance. You cannot apply
all the methods on the View object class if security on scripting is enabled in your

06-ch06.indd 165 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

166 Oracle Fusion Applications Development and Extensibility Handbook

environment. Please read Application Composer documentation to get a complete
list of trusted APIs available for scripting. In the following code snippet, we get the
classification view object and find out classifications assigned to a given party for a
given category.

def classificationVO = newView('CodeAssignment')
// Define the view criteria
def organizationTypeVC = classificationVO.createViewCriteria()
def organizationType = organizationTypeVC.createRow()
// find by PartyId
def organizationTypeCategory = organizationType.ensureCriteriaItem('OwnerTableId')
organizationTypeCategory.setOperator('=')
organizationTypeCategory.setValue(<party_id>)
// find by party
def organizationTypeCategory = organizationType.ensureCriteriaItem('OwnerTableName')
organizationTypeCategory.setOperator('=')
organizationTypeCategory.setValue('HZ_PARTIES')
// find by ORGANIZATION_TYPE
def organizationTypeCategory = organizationType.ensureCriteriaItem('ClassCategory')
organizationTypeCategory.setOperator('=')
organizationTypeCategory.setValue('ORGANIZATION_TYPE')
// filter by Status
def organizationTypeCategory = organizationType.ensureCriteriaItem('Status')
organizationTypeCategory.setOperator('=')
organizationTypeCategory.setValue('A')
// filter by ORGANIZATION_TYPE
def organizationTypeCategory = organizationType.ensureCriteriaItem('StartDateActive')
organizationTypeCategory.setOperator('ONORBEFORE')
organizationTypeCategory.setValue(adf.currentDate)
// filter by ORGANIZATION_TYPE
def organizationTypeCategory = organizationType.ensureCriteriaItem('EndDateActive')
organizationTypeCategory.setOperator('ONORAFTER')
organizationTypeCategory.setValue(adf.currentDate)
// apply this VC
organizationTypeVC.insertRow(organizationType)
classificationVO.appendViewCriteria(organizationTypeVC)
classificationVO.executeQuery()
while(classificationVO.hasNext()){
 def codeRow = classificationVO.next()
 println("class code = " + codeRow.getAttribute("ClassCode"))
}

Define Triggers to Extend
Default Processing for Object
Triggers are defined to complement default processing for standard or custom
objects. You write Groovy script in the trigger body to execute your additional logic
that may alter the default behavior of the data processing. When you define triggers,
they get executed at various points in the entity object lifecycle of a given entity
row. You define triggers from the Triggers tab under server scripts for any object.

06-ch06.indd 166 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 167

In this section, we will define a new attribute on an opportunity called Region
and populate its value when the opportunity sales account is assigned based on the
country of primary address of the customer on the opportunity.

 1. Define a new Fixed Choice List attribute field for opportunity. Define the
lookup codes with values as shown in the following illustration.

 2. Add this attribute to the Opportunity Edit page.

 3. Click the Create icon from the Triggers tab for server scripts under
opportunity. This will show the Create Trigger page.

 4. The Trigger field defines when this script will be executed in the entity
row processing cycle. The following triggers are available in Application
Composer for any object.

 a. After Create fires when a new entity row is created. Use this to set
default field values programmatically.

06-ch06.indd 167 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

168 Oracle Fusion Applications Development and Extensibility Handbook

 b. Before Modify fires when the first persistent field is modified for an
entity row on an existing, newly queried row.

 c. Before Invalidate fires when the first persistent field is modified for a
new or existing, newly queried entity row.

 d. Before Remove fires when an entity row is deleted.

 e. Before Insert in Database fires before a new entity row is inserted in the
database from the doDML phase of the entity row.

 f. After Insert in Database fires after a new entity row is inserted in the
database from the doDML phase of the entity row.

 g. Before Update in Database fires before an existing entity row is updated
in the database from the doDML phase of the entity row.

 h. After Update in Database fires after an existing entity row is updated in
the database from the doDML phase of the entity row.

 i. Before Delete in Database fires before an entity row is deleted in the
database from the doDML phase of the entity row.

 j. After Delete in Database fires after an entity row is deleted in the
database from the doDML phase of the entity row.

 k. After Commit in Database fires after the entity row is saved in the
database.

 5. We will need to define two triggers to meet our requirement. One trigger
is in Before Insert in Database so that we can assign the region when
opportunity is created. The other trigger is in Before Update in Database
so that we can assign the region when the sales account is assigned to
opportunity during update flow.

 6. Define the trigger for Create Flow and name it CreateOptyAssignRegion and
put the following code in the trigger.

// If the sales account is selected

if(TargetPartyId != null){

 // Get the organization party VO

 def organizationVO = newView('OrganizationParty')

 // Find the organization by PK

 def organizations = organizationVO.findByKey(key(TargetPartyId),1)

 // If found, execute logic to get country and set region

 if (organizations != null && organizations.size() > 0) {

 def organization = organizations[0];

 if(organization != null){

 // Get the country for primary address

06-ch06.indd 168 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 169

 def country = organization.getAttribute("Country")

 // Use global function to get region for given country

 def region = adf.util.getRegionForCountry(country)

 // Set the region attribute in region field for opportunity

 setAttribute("Region_c", region)

 }

 }

}

 7. Go to the opportunity home page using the Navigator menu. Click the
Create Opportunity icon. Select sales accounts with addresses in the United
States and click the Save and Edit icon.

 8. The Edit Opportunity page will show the Region field as North America.

 9. Define the trigger for update flow and name it UpdateOptyAssignRegion and
put the following code in the trigger.

// If the sales account is changed to a different value

if(TargetPartyId != null && isAttributeChanged("TargetPartyId")){

 // Get the organization party VO

 def organizationVO = newView('OrganizationParty')

 // Find the organization by PK

 def organizations = organizationVO.findByKey(key(TargetPartyId),1)

 // If found, execute logic to get country and set region

 if (organizations != null && organizations.size() > 0) {

 def organization = organizations[0];

 if(organization != null){

 // Get the country for primary address

 def country = organization.getAttribute("Country")

 // Use global function to get region for given country

 def region = adf.util.getRegionForCountry(country)

 // Set the region attribute in region field for opportunity

 setAttribute("Region_c", region)

 }

 }

}

06-ch06.indd 169 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

170 Oracle Fusion Applications Development and Extensibility Handbook

Go to the above opportunity and change to sales accounts with addresses in
India and save the opportunity. Drill down to the opportunity again and the Region
field will now show Big Four.

How to Define Buttons
and Links on Object Pages
Application Composer allows adding buttons and links to certain pages for standard
and custom objects. You can define buttons to take action on an object or do
navigation to a different page or a Web site. You can define links to navigate to a
Web site. Which standard object allows buttons and links is configured by Fusion
Applications. Please read product-specific documentation to know the details. To
define buttons and links for an object, go to Actions and Links for a given object
from the object tree as shown in the following illustration.

 1. Go to Actions and Links for Opportunity object and click the Create icon to
define a new button for opportunity.

06-ch06.indd 170 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 171

 2. Give the name as Open Opportunity, choose Script for Source, and select a
method name as our object function defined earlier, openOpportunity.

 3. Go to the pages for opportunity and go to the summary page. Add this
button to the summary table.

06-ch06.indd 171 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

172 Oracle Fusion Applications Development and Extensibility Handbook

 4. Go to the opportunity home page using the Navigator menu and search for
any closed opportunity. Select the opportunity from the results and click the
Open Opportunity button.

 5. This will reopen the opportunity. Go to the Edit Opportunity page and you
will see the status is now changed to Open.

 6. You can define a link to any Web site or URL and add to the summary table
in similar fashion.

How to Define
a Saved Search for an Object
Application Composer allows defining a saved search that is available to all users for
a given object. Saved search is available in the object search page and is configured
with predefined search criteria. You define a saved search from the Saved Searches
region for a given object from the object tree as shown here.

06-ch06.indd 172 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 173

 1. Go to the saved search for Sales Reference Customer object and click the
Create icon to define a new saved search.

 2. Name it Large References, define the search condition as Size = LARGE, and
save the search.

 3. Go to the opportunity home page using the Navigator menu. Click the Manage
Sales References link from the Task pane. Notice a new saved search.

06-ch06.indd 173 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

174 Oracle Fusion Applications Development and Extensibility Handbook

How to Define
a Top-Level Custom Object
You can define a top-level custom object for an application using the Create icon in
the Objects pane in the regional area as shown here.

This Create icon is enabled only for applications that support top-level custom
objects. Read product-specific documentation to understand which applications
support top-level custom objects. This is configured with Fusion Applications and
cannot be customized. You can also create a new top-level custom object using the
Create button from the local area custom object list table.

 1. Click the Create icon to define a custom top-level object and provide
the details as shown in the following illustration. The Record Name is a
mandatory attribute created by the Application Composer for the object
internally. It represents the name of a single instance of the object.

06-ch06.indd 174 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 175

 2. Once the custom top-level object is created, click the Fields link to define
additional attributes for this object. The Standard tab shows default fields
created by Application Composer for the object as shown in the following
illustration. The default fields include the system attributes like RecordName,
CreatedBy, CreationDate, LastUpdateDate, LastUpdatedBy, and Id which is a
system-generated primary key attribute for the object.

 3. Go to the Custom Fields tab and define the following custom attributes for
the service request object as shown in the upcoming illustration.

 ■ Severity Fixed choice list field with lookup that accepts values 1, 2, 3, 4.
Provide default value 3.

 ■ Status Fixed choice list field with lookup that accepts values Open,
Closed, Support Working, and Customer Working. Provide the default
value Open.

 ■ Summary Text field to explain the summary of service request. Mark it
indexed field.

 ■ Details Long text area to explain and update the progress.

 ■ Justification Text field to capture details when priority changes.

 ■ Priority Number field to capture internal work priority for this request.

06-ch06.indd 175 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

176 Oracle Fusion Applications Development and Extensibility Handbook

 ■ Reported Date Date field defaulted to today() function and index-enabled
and noneditable to capture the date reported.

 4. Click the Pages link to generate work area pages for this object. Click the
Create Work Area link to start the generation wizard.

 5. The first step is to configure the Navigator menu and regional search for the
work area page. Select Menu Category as Customer Data Management,
give the menu label as Service Request, and optionally choose where this
particular menu entry shows under this category along with other standard
menu items. Enable the regional search and select reported date, name,
status, and severity and mark name and reported date as “at least one is
required” so that the search is efficient, as shown in Figure 6-7.

 6. Click the Next button to configure the local area search region. Include all
the attributes for search as shown in Figure 6-8.

 7. Click the Next button to configure overview and creation pages. Select the
drill-down column from the summary table as Service Request Name and
show reported date, severity, status, summary, and priority in the summary
table. Enable create, edit, and delete actions. Expose the Service Request
Name, Severity, Summary, and Details fields only on the creation page as
shown in Figure 6-9.

06-ch06.indd 176 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 177

FIGURE 6-7. Configuring the Navigator menu and regional search for a custom object
work area

 8. Click Next to complete the details page for this object as shown in Figure 6-10.

 9. Click Save and Close to complete the configuration and see the pages
generated as shown in Figure 6-11.

06-ch06.indd 177 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

178 Oracle Fusion Applications Development and Extensibility Handbook

 10. Go to the work area using the Service Request link from the Navigator menu
under Customer Data Management as shown here.

FIGURE 6-8. Configuring a local search page for a custom object work area

06-ch06.indd 178 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 179

 11. When you go to the service request work area using the link, you see the
regional search area and local search area as configured earlier here.

FIGURE 6-9. Configuring overview and create page for a custom object

06-ch06.indd 179 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

180 Oracle Fusion Applications Development and Extensibility Handbook

 12. Click the Create icon to go to the Create page and you will see it as
configured earlier.

FIGURE 6-10. Configuring the details page for a custom object

06-ch06.indd 180 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 181

FIGURE 6-11. Custom object generated work area pages

 13. Click on the Service Request Name from the summary page to go to the
Details page and you will see it as configured earlier, as shown here.

06-ch06.indd 181 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

182 Oracle Fusion Applications Development and Extensibility Handbook

How to Define Relationships
Between Objects
A relationship defines a foreign key association between two objects and indicates
how the data is connected for the two objects. The data from a related object can be
shown as a subtab or a tree node in the object work area. Application Composer
allows defining these relationships between objects within the same application.
There are various types of relationships exposed in Application Composer as
discussed in the following section.

 ■ A standard relationship is defined between two standard objects by Fusion
Applications. This is predefined by the product for a given object and visible
on the object overview page in Application Composer.

 ■ A parent-child relationship is created when a custom child object is created
for a standard or custom top-level object. The child object is always in the
context of its parent and does not have its own work area. You can add the
child object as a subtab or tree node in the parent object work area. A top-
level object can have many child objects.

 ■ A reference relationship can be created between two top-level objects in
Application Composer. The two objects are independent of each other but
may have relations between them. You can show data from a related object
in a subtab or tree node for a given object work area.

 ■ A choice list relationship is created when you define a dynamic choice list
field for a given object. This is a reference relationship created implicitly by
Application Composer when you define a dynamic choice list field for one
object by pulling data from other objects to define the choice list.

 ■ A many-to-many relationship can be defined in Application Composer
between two top-level objects. This is defined by creating an intersection
object between the two objects. First you define a custom child object for
one top-level object and then define a reference relationship or dynamic
choice list between the custom child and other top-level objects. Once this
relationship is defined, you can expose this intersection in both top-level
object work area pages.

06-ch06.indd 182 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 183

You can view all relationships for a given application from the Relationships
page from the Common Setup pane in the regional area as shown in the following
illustration.

To define a new reference relationship, click the Create icon in the list. Specify
the source object, target object, and the name of the relationship and click Save and
Close to define the relationship.

You define a parent-child relationship by creating a new custom child object for
a given object. We will discuss this in the following section.

How to Define a Custom Child Object
You can create a custom child object for a standard or custom object in Application
Composer. This is a pure child object for other objects and it cannot exist without
the parent object. Once you define the child object:

 1. Click on the standard object or custom object link in the regional pane on
the left side to see a list of objects. We will define a custom child for the
custom object we created earlier. You can select the object and click the

06-ch06.indd 183 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

184 Oracle Fusion Applications Development and Extensibility Handbook

Create Child Object button to create a custom child for the selected object
as shown here.

 2. You can also go to the object overview page by clicking on the object and
then click the Create Child Object button from the Child Objects region.

 3. In the Create Custom Child Object dialog, provide the object name as
Service Response.

 4. Add a new field Response Date to this object and give the default value as
today() using Expression Builder.

How to Define Subtab Content
Application Composer allows you to add the content from related objects to the
subtab for a top-level object. The subtab for the standard object detail page is
enabled on selected objects by Fusion Applications. Please read product-specific
documentation to understand which objects allow subtabs. You can add content to a

06-ch06.indd 184 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 185

subtab for any top-level custom object. You can define a subtab from the details
page for a given object. Let us now add the custom child object content to the
service request page.

 1. Go to the pages for the custom object Service Request from the object tree. It
shows the list of work area pages for this object.

06-ch06.indd 185 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

186 Oracle Fusion Applications Development and Extensibility Handbook

 2. Click the Create icon under the Subtabs list for the Details page. This will
show the Create Subtab page. You can choose the type of content you want
to add on the subtab from among four options.

 ■ Child or related object allows you to show content for the child object of a
given top-level object of any related object for this top-level object.

 ■ Context link allows you to show content from any unrelated object. You
can configure the filter criteria for that context object and pass the run-time
values from the current object.

 ■ Common component allows you to add notes, tasks, interactions, and
appointments to your custom object.

 ■ Web content allows you to add an external Web site as subtab for the
object.

 3. Go to the Create Subtab page again and select the Common Component
option and click the Next button. This will show the Edit Common
Components subtab page. Select all options and click Save and Close.

06-ch06.indd 186 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 187

 4. Navigate to the service request home page using the Navigator menu and
drill down to a service request. The Edit page will show the new subtabs.

 5. Go to the Create Subtab page again and select Child or Related Object and
click the Next button. This will show the Select Child or Related Object
page. Select the Data Object as the Service Response and give it the label
Service Response. Configure the summary table and detail form by selecting
attributes you are interested to see on those pages. Enable the Show Create
and Show Delete options from the Configure Summary Table actions. The
page looks like Figure 6-12. Click Save and Close to add the subtab to the
Details page.

06-ch06.indd 187 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

188 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 6-12. Adding a custom child service response subtab on the edit service
request page

 6. Navigate to the service request home page using the Navigator menu and
drill down to a service request. The Details page will show the Service
Response tab as shown in Figure 6-13. You can use the Create and Delete
buttons to manage the responses.

 7. Similarly, you can add a context link and Web content.

06-ch06.indd 188 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 189

How to Define Tree Node Content
CRM applications have an object tree for Sales Account and Partner objects where
the tree nodes show details about the object. Except for common components, you
can add all the content as tree nodes as you do for subtab. For these two objects,
subtab is not available and you can add the content as a tree node.

 1. Go to the pages for the Partner object under the Sales application. This will
show you existing tree nodes for the Partner object under the Details page
section as shown here.

FIGURE 6-13. Service response custom child subtab on run-time page

06-ch06.indd 189 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

190 Oracle Fusion Applications Development and Extensibility Handbook

 2. Click the Create icon to navigate to the Define Tree Node page. Select
Context Link as option and click Next. On the Create Tree Node: Context
Link page, select Partner Programs in the Data Object drop-down and set the
Search Criteria as Program Name starts with Test as shown here.

 3. Configure the summary table and detail form to select attributes as shown in
the next illustration.

06-ch06.indd 190 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 191

 4. Click Save and Close to configure the node. Navigate to the Partners home
page using the Partners link under Partner Management in the Navigator
menu. Drill down to a partner and it shows the new Partner Programs node
with details per the criteria given as shown in the following illustration.

06-ch06.indd 191 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

192 Oracle Fusion Applications Development and Extensibility Handbook

How to Secure Custom Objects
The custom objects are secured by default, and only users with the default duty role
for a given application will get access to those objects. This holds true for the top-level
custom object and custom child object for standard objects. Please read product-
specific documentation to know the default duty roles that give access to custom
objects for a given application. You can use Application Composer to customize this
default behavior and give access to users with other CRM duty roles using the Security
link for a given object.

 1. Click the Security link for Service Request object as shown next, where you can
grant access to the Service Request object to Sales Representative Duty.

 2. You can also use the Role Security page from the Common Setup pane to
define security for a given duty for multiple objects. From the Role Security
overview page, select the duty for which you want to customize the object
security and click the Define Policies button.

 3. On the Define Policies page, you can see all custom objects for a given
application and then define the security access to a given duty for any or all
objects as shown here.

06-ch06.indd 192 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 193

 4. You can define both function and data security policy for an object for a
given duty role using the check boxes provided for various access levels.

 a. Function Security

 i. View Access enables object work area pages for the user.

 ii. Create Access enables a create action for the user.

 iii. Update Access enables an edit or update page for the user.

 iv. Delete Access enables a delete action for the user.

 b. Data Security

 i. View All access gives users the ability to view all data for a given
object. If this access is granted, the user automatically gets view
function security access.

 ii. Update All access gives users the ability to update all data for a
given object. If this access is granted, the user automatically gets
update function security access.

 iii. Grant Access controls the Manage Permissions button on the object’s
summary table. A user with this button can select a record and define
data security access level for other users for the selected record.

How to Define E-Mail Templates
E-Mail Templates allows you to define the structure and body of the notification
content. You can manage E-Mail Templates outside a sandbox only. Click the E-Mail
Templates link from the regional pane Common Setup or from the Overview page in
the Application Composer home page. This will launch the Manage E-Mail Templates
page where you can search, create, edit, copy, or delete templates for a given
application. We will define a new template for Opportunity that can be used to send
notifications when an update is made to an opportunity that is marked as top
opportunity.

 1. Click the Create icon to define a new template. This will launch the Create
E-Mail Template page.

 2. Select Opportunity from the Object drop-down.

 3. Give it the name TopOpportunity and provide a description of the template.

06-ch06.indd 193 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

194 Oracle Fusion Applications Development and Extensibility Handbook

 4. Specify the E-Mail Subject that looks like Updated Opportunity <opportunity
name> - <opportunity number> at run time when e-mail notification is sent.
You can do this either by specifying the fields from the opportunity object
in the E-Mail Subject field directly, or by picking the field and clicking the
Insert button as shown in the following illustration.

 5. Now specify the E-Mail body similarly to constructing the message using
fields from opportunity attributes. The content of the E-Mail will be “The
opportunity [$Name$] - [$OptyNumber$] for customer [$PartyName$] in
stage [$SalesStage$] and status [$StatusCode$] is updated. Please review the
details and take appropriate action,” as shown here.

 6. Click Save to save the template and use it for object workflow.

06-ch06.indd 194 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 195

How to Define Object Workflow
Object Workflow is an orchestrated process executed based on a set of triggering
conditions defined for a given object. To define an object workflow, you go to the
Object Workflows page using the Common Setup pane from the regional area.

 1. Click the Create icon to go to the Create Object Workflow page. To define a
workflow, the following properties must be specified.

 a. The object for which you want to define the workflow.

 b. Event Point when the workflow should be triggered. You can choose
either Create or Update as Event Point.

 c. Event Condition in addition to Event Point. The workflow will be
triggered only when the Event Condition specified using a Groovy
script is satisfied. Mention the condition to trigger the workflow only
under certain circumstances instead of every time a record is created or
updated.

 d. Actions define the outcome of workflow execution when the specified
event point and conditions are satisfied. There are five types of actions
supported in Application Composer.

 i. Field Updates allows you to update other fields for objects in
response to the event. Which fields are available for update is
configured by Fusion Applications.

 ii. E-Mail Notification allows you to send e-mail in response to an
event. You can use e-mail templates to send the notification and
include field values from the object in the body.

 iii. Task Creation allows you to automatically create a work list task in
response to the event.

 iv. Outbound Message allows you to invoke an external Web service
in response to the event. This external Web service will receive the
data from Fusion CRM Applications in response to the object event.
This external service endpoint URL will be registered when you
define the outbound message action, and this service schema must
conform to the object schema as defined by Oracle applications.
Please read product-specific documentation to understand exact
details about service for a given object or custom object for a given
application.

 v. Business Process Flow allows you to invoke a business process in
response to the event.

06-ch06.indd 195 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

196 Oracle Fusion Applications Development and Extensibility Handbook

 2. We will define a workflow to send notification when top opportunity is
updated as shown here.

 3. Click the Create icon for the E-Mail Notification section under the Actions
region to send e-mail notification using the template we created earlier as
shown in Figure 6-14. The Recipient Type allows you to specify who should
get the notification when the object workflow is executed.

 a. E-mail fields on record allow you to select an attribute from the object
that specifies the e-mail to be used. The attributes available for this list
are configured by Fusion Application standard objects.

 b. Relative users on record allow you to select users associated to the
object such as who created or last updated the record or resource on
the object team like the opportunity team. The attributes available for
this list are configured by Fusion Applications standard objects.

 c. Roles allow you to pick CRM application roles and all users will get
notification for the specified role.

 d. Specific users allow you to pick any user from the Fusion Applications
to send notification.

 e. Specific e-mail addresses allow you to specify one or more hard-coded
email addresses that will get notification. For our exercise, specify your
e-mail address to send notification.

06-ch06.indd 196 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 197

 4. Go to the opportunity home page and update any top opportunity. This will
send the notification content as shown in the following illustration.

 5. You can define multiple actions for the object workflow event.

FIGURE 6-14. Define E-Mail Notification action for object workflow

06-ch06.indd 197 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

198 Oracle Fusion Applications Development and Extensibility Handbook

How to Define Business Processes
Business processes are end-to-end orchestrated flow defined using Oracle Business
Process Composer via Application Composer. Once you define a business process,
you can use it in object workflow to invoke that process in response to an event for
a given object. You can define it using the Business Processes link from Common
Setup regional pane. This capability will be available in future releases of CRM
applications.

How to Debug Server Scripts
Groovy scripts are very technical and error-prone with the syntax. Oftentimes you
need to debug your long scripts to understand why the script may not be working
the way you expect. You can add logging in your script using the global function we
defined earlier to print the messages in your script. Once you add logging in your
script, you can go to the Run Time Messages page from the Common Setup regional
pane as shown in the following illustration.

You first need to enable logging by clicking the check box Enable Application
Script Logging for the given application. Make sure to select the right application first.
The application must be selected where your code will be executed at run time and
not where you have defined the object. For example, if you define a script on a

06-ch06.indd 198 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 6: Extending CRM with Oracle Application Composer 199

Trading Community Organization Profile object and want to debug it for the Create
Customer flow in the Customer Center, you need to enable logging on the Customer
application and not on the Common application. Once you enable logging for the
given application, you can go to the application page and execute the flow that will
trigger the script. Once flow is executed, you can come back to the Run Time
Messages page for that application and click the Get Latest Log Messages button
to get the logging that you added in your script.

How to Extend Import and Export
Oracle CRM applications allow import and export for standard objects using the file
import, bulk import, and file export utilities. You can expose the custom attributes
and custom objects on those interfaces. Please read product-specific documentation
to understand which objects support import and export and how to execute those.
To expose the custom attributes and objects to import and export interfaces, you
need to be outside of the sandbox. Go to the Import and Export page from the
Common Setup in the regional area and click the Generate button to expose the
custom attribute and objects that are published for the given application in these
interfaces as shown in the following illustration.

06-ch06.indd 199 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

200 Oracle Fusion Applications Development and Extensibility Handbook

Summary
In this chapter, we discussed the capabilities of Oracle Application Composer for CRM
applications. We talked about how to extend standard objects to add new attributes
and expose those attributes on application pages, how to define a saved search for
those objects, and how to define validations and triggers on the objects and how to
debug these scripts. We also discussed how to define custom top-level and child
objects, how to secure them, and how to define relationships between standard and
custom objects. We described how to define business events and object workflows
in response to those events. We talked about how to expose the extensions to import
and export interfaces and how to build business process for objects.

06-ch06.indd 200 11/12/13 12:00 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
7

Customizing with
Oracle JDeveloper

07-ch07.indd 201 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

202 Oracle Fusion Applications Development and Extensibility Handbook

As discussed in Chapter 2, you use Oracle JDeveloper to customize Fusion
Applications for cases where the business requirement cannot be satisfied
 with run-time customization tools. It is recommended that you do not use

Oracle JDeveloper for customizations of CRM applications and use CRM Application
Composer instead as much as possible. For non-CRM applications, JDeveloper is the
only tool available in current releases to customize and extend standard behavior. In
this chapter, we will discuss steps to set up a development environment and a few
sample use cases for customizations using Oracle JDeveloper.

How to Set Up
a Development Environment
To customize Fusion Applications using JDeveloper, you will need Fusion Applications
extensions with JDeveloper for the given version of Fusion Applications. You can
download the necessary version of JDeveloper and the extension from the Oracle
eDelivery Web site. Select Oracle Fusion Applications as product pack and the
platform where you want to use JDeveloper as shown in Figure 7-1 and click Go.

Select the release you want to download the JDeveloper for and click Continue.
Download Oracle Fusion Applications Companion 11g, Oracle JDeveloper 11g,
Oracle Application Development Framework 11g Part 1 to 3, and Oracle Fusion
Applications Technology Documentation Library 11g as shown in the following
illustration.

07-ch07.indd 202 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 203

Follow the detailed instructions in Oracle Fusion Applications Developer’s Guide
to set up the JDeveloper environment for customization. The steps outlined here will
serve as guidelines to complete the setup.

 1. Install JDeveloper using the downloaded Oracle JDeveloper 11g based on
your platform. If you are installing on Windows, make sure the path used to
install JDeveloper does not have any space(s) in it.

FIGURE 7-1. Select the Fusion Applications release you want to download.

07-ch07.indd 203 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

204 Oracle Fusion Applications Development and Extensibility Handbook

 2. Set the following environment variables before you launch JDeveloper:

set PATH=<path to python 2.3 or higher>\bin:%PATH%

set MW_HOME=<path to JDeveloper installation directory>

set JAVA_HOME=%MW_HOME%\jdk160_24

set PATH =%JDK_HOME%\bin:%PATH%

set JDEV_USER_HOME=<path to JDeveloper installation directory>\jdeveloper\mywork

set FADEV_VERBOSE=true

set USER_MEM_ARGS=-Xms256m -Xmx1024m -XX:MaxPermSize=512m

-XX:CompileThreshold=8000

 3. Launch JDeveloper from the $MW_HOME/jdeveloper/ directory. Choose the
Default Role as shown here.

07-ch07.indd 204 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 205

 4. Once JDeveloper opens up, use the Help menu and go to Check for Updates.

 5. Create a new update center for Fusion Applications as shown in the
following illustration. The location of the fusion_apps_updatecenter.xml file
is in the fusion_apps_extensions folder when you unzip the Oracle Fusion
Applications Companion 11g zip file that you downloaded earlier.

07-ch07.indd 205 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

206 Oracle Fusion Applications Development and Extensibility Handbook

 6. Select this new Update Center and click Next. Select Fusion Apps
Development Environment from the available updates, and this will choose
all necessary Fusion Application Extensions required for customizations as
shown in the following illustration.

 7. Once the extensions are downloaded, restart JDeveloper to configure the
WebLogic Server domain for your customizations. You will see two new
roles that we will use for customizations. Select Oracle Fusion Applications
Developer Role as shown next.

07-ch07.indd 206 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 207

 8. Once JDeveloper opens up, it will ask you to configure the WebLogic Server
for your customizations.

 9. Click Yes to configure the server. Select Default Integrated Server on Step 1
of configuration. Provide details for Fusion database and LDAP server during
the configuration setup. The default password for WebLogic domain is
weblogic1 and you can change that during the setup.

07-ch07.indd 207 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

208 Oracle Fusion Applications Development and Extensibility Handbook

 10. After the domain is configured, you can see that on the last page of the
configuration, the settings will be stored in the file fusion_apps_wls.properties
under your MW_HOME. This file stores all the connection settings and can
be shared with other developers to configure their domain with the same
values. To configure the domain using this file, you simply ask developers to
put this file under directory system11.1.1.xx.yy.zz/o.jdevimpl.rescat2. When
JDeveloper starts, the domain is configured to point to the values in this
file. After that, you can manually create the integrated WebLogic domain
from the View: Application Server Navigation menu by right-clicking on
IntegratedWebLogicServer and selecting the Create Default Domain option
as shown in the following illustration.

How to Determine Application Artifacts
for Customization
To customize any application page or behavior on the page, you first need to know
and understand the anatomy of how Fusion Applications are built and how you can
identify the artifacts involved on that page for customization. In the Oracle E-Business

07-ch07.indd 208 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 209

Suite application, there was an “about this page” link that used to give information
on the page and underlying business objects used for the page. In Fusion Applications,
there is no such single place to identify the name of the page and business objects
behind that page at this point, and that makes it very difficult and tedious to find out
which artifacts you should customize. Let us first understand the typical application
page and how it is built.

 ■ Every page in Fusion Applications is built as a bounded task flow (TF).
The bounded task flow is built using page fragments (JSFF). The navigation
is defined in the TF between two JSFF or between JSFF and another TF
declaratively. Identifying this TF is key to finding out the artifact you need
to customize.

 ■ The entry points to a given application such as dashboard or a work area
are built as JSF pages (JSPX) and are directly accessible from the Navigator
menu or the UI Shell global menu. You can look at the menu file associated
with the page to find out the TF that constitutes the landing page or the Task
pane or Regional area pane links.

 ■ Every page is built using ADF Application Module (AM) Data Controls,
which consist of View objects (VO) that are built on top of Entity objects
(EO). Once you identify the page, you can look at the associated pageDef
binding for the page to identify associated AM, VO, and EO objects that are
used to construct the page.

 ■ If your page is a setup task invoked using the Setup and Maintenance
application, you can identify the TF by going to the Manage Task Lists
and Tasks page. This page is accessible to the administrator from the Task
pane under Implementation Objects in the Setup and Maintenance work
area. Navigate to this page and search for the task you are interested in
customizing. Click on the task name to drill down to see the details. It will
show the name of the TF behind that setup task as Program Name.

07-ch07.indd 209 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

210 Oracle Fusion Applications Development and Extensibility Handbook

Now that you know how to identify the underlying task flow and the application
details for a given page at run time, we will discuss how can you locate those
artifacts in JDeveloper to do customizations. We will import the deployed Enterprise
Achieve (EAR) file in JDeveloper so that we can find the artifacts to customize.

 1. To identify the artifacts to customize in a given application, you first create
a customization application in JDeveloper. To create a customization
application, launch JDeveloper and select the Oracle Fusion Applications
Developer role.

 2. Once JDeveloper is launched, choose the File | New menu option to open
the New Gallery and select Fusion Applications Customization Application
as shown in Figure 7-2.

FIGURE 7-2. Creating a Fusion Applications customization workspace

07-ch07.indd 210 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 211

 3. On the Create Customization Application dialog, provide the details for your
new customization application as shown in Figure 7-3. You must specify the
deployed application ear or the location to the exploded EAR directory for
the application that you want to customize.

FIGURE 7-3. Customization application properties

07-ch07.indd 211 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

212 Oracle Fusion Applications Development and Extensibility Handbook

 4. Give the name of the project as StandardObjectCustomization and complete
the application creation.

You use JDeveloper with the Oracle Fusion Applications Adminis-
trator Customization role as shown in the following illustration
to customize any artifact.

 5. Once you open the JDeveloper, you can see customizable jar files under the
Resource Palette and available customization layers for a given application
as shown in Figure 7-4.

07-ch07.indd 212 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 213

FIGURE 7-4. Customizable jar files for a given application in JDeveloper

 6. Search for the task flow you have identified inside which you need
customizations. You can use the Resource Palette search window to search
by name. Search for BuSearchFlow. Double-click the BuSearchFlow.xml file
to open the task flow in JDeveloper as shown in Figure 7-5.

 7. The Manage or Create/Edit action in this task flow invokes another task flow,
BuMaintainFlow. Search for this in the Resource Palette and open the task
flow as shown in Figure 7-6.

 8. The page used for create/edit of BU is BuProperties.jsff as seen in the task
flow. Search for this page and open the BuPropertiesPageDef file to inspect
what ADFbc is used on this page as shown in Figure 7-7.

07-ch07.indd 213 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

214 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 7-5. Business Unit search task flow

FIGURE 7-6. Business Unit manage task flow

07-ch07.indd 214 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 215

FIGURE 7-7. Business Unit manage page definition file

FIGURE 7-8. Application module for Business Unit setup page

 9. The pageDef shows that the page is using FinFunBusinessUnitsUsageSetupAM
and BusinessUnit view instance in the AM. Search for
FinFunBusinessUnitsUsageSetupAM and open to find the VO definition for
the BusinessUnit instance as shown in Figure 7-8.

 10. The AM shows that the VO definition is BusinessUnitSetupVO. Search for
this VO in the Search Palette. Right-click on the VO and you should see
the Customize menu option as shown in Figure 7-9. If you do not see that
option or see a message in jdev log that reads “Customizations are disabled
for the node ‘BusinessUnitSetupVO.xml’ because it is not part of the project
contentset,” choose GLOBAL layer for customization context.

07-ch07.indd 215 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

216 Oracle Fusion Applications Development and Extensibility Handbook

How to Customize Existing
Business Components
In this section, we will discuss two use cases to customize standard ADF business
components. We will modify an out-of-the-box list of values (LOV) for a field to add
more filters to it, and we will add a new business rule to an entity object.

How to Modify LOV
We will modify the Business Unit setup UI Manager Field LOV to show only
Employees and not show contingent workers in the LOV.

 1. Right-click on BusinessUnitSetupVO and choose Customize. This will ask
you to add ADF Library AdfHcmOrgBusinessUnitsModel.jar to your project.
Click the Add Library button to add the library to your customization project.

 2. Once the VO is added for customization, you can edit in the JDeveloper VO
editor. Go to Manage LOV and find the data source for this LOV as shown in
Figure 7-10.

FIGURE 7-9. Setting the customization layer

07-ch07.indd 216 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 217

 3. The LOV list data source points to ManagerVA. Go to the View Accessors tab
in the VO and edit ManagerVA as shown in Figure 7-11.

 4. Select AllEmployees view criteria and add it to the select list to filter the LOV
to return only employees for Manager Field as shown in Figure 7-12.

 5. This completes the customization use case of modifying the LOV to filter the
data shown. You can view the customizations in Application Navigator as
shown in Figure 7-13.

FIGURE 7-10. Manager field List of Values for Business Unit Setup VO

07-ch07.indd 217 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

218 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 7-11. View Accessors tab for manager list of values

FIGURE 7-12. Modifying manager LOV data source to show only employees

07-ch07.indd 218 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 219

How to Add New Validation
Fusion Applications enforce a lot of business rules and validations out of the box.
They cover most of the common scenarios, but many times you have a requirement
to enforce certain business rules that are not enforced as standard behavior. You will
need to modify the entity objects to add, remove, or modify existing rules. In this
section, we will add a new validation on a business unit that it cannot be inactivated
if there is a business function assigned to the business unit.

 1. Search for BusinessUnitEO in the Resource Palette, right-click, and choose
the Customize menu option. This will open the EO in the JDeveloper editor.

 2. To check if there is a business function associated with the business unit, we
will use BusinessUnitUsageSetupVO and view criteria SearchGenFinTxnBF
in that VO. Go to the View Accessors tab in the EO and click the Create New
View Accessor button as shown in the following illustration.

FIGURE 7-13. Customized file for Business Unit Setup VO

07-ch07.indd 219 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

220 Oracle Fusion Applications Development and Extensibility Handbook

 3. Select the VO and name it BusinessUnitUsageValidate. Click the Edit icon
to use the necessary View Criteria (VC) for this view accessor definition as
shown here.

 4. Select SearchGenFinTxnBF view criteria and supply the value for the bind
variable via OrganizationId attribute.

07-ch07.indd 220 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 221

 5. Now go to the Business Rules tab and click the Create New Validator icon to
define a new validation rule using the view accessor.

07-ch07.indd 221 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

222 Oracle Fusion Applications Development and Extensibility Handbook

 6. Select the Script Expression from the Rule Type drop-down, and enter the
script such that it returns false when a row is found in View Accessor, or
else returns true indicating there are no business functions, as shown in the
following illustration.

if(BusinessUnitUsageValidate?.hasNext())
 return false;
return true;

 7. Now go to the Validation Execution tab and give the conditional execution
expression such that the validation is executed only when Status == ‘I’. Also,
execute the validation rule only when the Status attribute is changed by
selecting that attribute as shown in Figure 7-14.

07-ch07.indd 222 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 223

 8. Go to Manage Messages tasks in FSM and define a new error message. Now
go to the Failure Handling tab on the validation window and click Browse
to select the Existing Message icon. Choose your newly defined message as
shown in Figure 7-15.

FIGURE 7-14. Specifying validation execution condition

07-ch07.indd 223 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

224 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 7-15. Specifying an error message for a validation rule

How to Customize
Existing Application Pages
In this section, we will discuss two use cases on how to customize a standard page
behavior. We will define a new saved search and expose it on a given search page
and we will add a new attribute to an application page.

How to Customize Search
In this section, we will customize search on the business unit search page to return
only active business units and make them available on the page by default. We will
add another saved search to search all business units.

 1. Open BuSearchPageDef to find out what VO and VC are used for the search
region on this page as shown in Figure 7-16.

 2. Open the BusinessUnitSetupVO in customization mode. Go to the Query
tab and edit the ManageBusinessUnitsSearch view criteria. Modify the view
criteria to change the Status field Operand to Literal and value of “A” as
shown in Figure 7-17.

07-ch07.indd 224 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 225

FIGURE 7-17. Customizing out-of-the-box search criteria

FIGURE 7-16. Page definition file for the business unit search page

07-ch07.indd 225 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

226 Oracle Fusion Applications Development and Extensibility Handbook

 3. Go to the UI Hints tab in the View Criteria editor and check the Show in List
box to make this available in saved search at run time. Select the ShortCode
attribute and choose Rendered Mode to All. Select the Status attribute and
set Rendered Mode to Never as shown in Figure 7-18.

FIGURE 7-18. Setting UI Hint properties for search attributes

07-ch07.indd 226 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 227

FIGURE 7-19. Adding new view criteria

 4. Click the Create New View Criteria button and define a new VC to return all
business units as shown in Figure 7-19.

07-ch07.indd 227 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

228 Oracle Fusion Applications Development and Extensibility Handbook

 5. The view criteria created is available in saved search by default. Go to the UI
Hints tab and check Query Automatically shown in Figure 7-20. Uncheck
the Show Match All and Match Any box. This saved search will be available
on run-time UI and the user can select it from the Saved Search list of values
on the Manage Business Units page.

FIGURE 7-20. Configuring new view criteria for saved search

07-ch07.indd 228 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 229

How to Add a New Attribute to a Page
In this section, we will add a new attribute that indicates the number of transaction
business functions assigned to the business unit and expose it on the business unit
search page.

 1. Open BusinessUnitEO in customization mode and click the Create New
Attribute button from the Attributes tab.

 2. Name the attribute NumberOfTxBusFuncAssigned and provide
an expression to calculate the number of rows in the view accessor
BusinessUnitUsageValidate that we created earlier to check transaction
business functions assigned for this business unit as shown in Figure 7-21.

BusinessUnitUsageValidate.count("BusinessUnitId")

 3. Open BusinessUnitSetupVO in customization mode and click Add Attribute
from Entity as shown in Figure 7-22.

 4. Select the newly added attribute from the BusinessUnitEO to this VO as
shown in Figure 7-23.

FIGURE 7-21. Creating a new attribute in the EO

07-ch07.indd 229 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

230 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 7-22. Adding a new attribute in the VO

FIGURE 7-23. Selecting an EO attribute to be added to the VO

07-ch07.indd 230 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 231

 5. Open BuSearch.jsff and BuSearchPageDef in customization mode.
Expand the Data Control page and look for BusinessUnit VO under
FinFunBusinessUnitsUsageSetupAMDataControl as shown in Figure 7-24.
If you do not see this data control, select Tools | Preferences | Business
Components: General and check the box Display Imported ADF Libraries in
Data Control Palette. Close the Preferences dialog and then refresh the Data
Control Palette.

 6. Drag the NumberOfTxBusFuncAssigned field and drop it as a read-only ADF
column in the business unit search result table as shown in Figure 7-25.

FIGURE 7-24. Finding the view object in data control

07-ch07.indd 231 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

232 Oracle Fusion Applications Development and Extensibility Handbook

How to Deploy
JDeveloper Customizations
When customizations are made to existing artifacts in an ADF library, you need to
use the Metadata Achieve (MAR) profile to deploy those customizations to a
deployed application. This is a standard deployment profile option in Fusion
Applications built using JDeveloper.

 1. Right-click on your application workspace and go to Application Properties
from the context menu.

FIGURE 7-25. Adding a new attribute on the page

07-ch07.indd 232 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 233

 2. Select the Deployment link and click the New button to create a new
deployment profile for this application as shown in Figure 7-26.

 3. Select the Archive Type as MAR and click OK.

 4. In the MAR profile properties, make sure that all necessary directories are
selected for ADF Library Customization as shown in Figure 7-27. Also
make sure that User metadata and HTML root directories do not have
anything selected.

FIGURE 7-26. Creating a new deployment profile for an application

07-ch07.indd 233 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

234 Oracle Fusion Applications Development and Extensibility Handbook

 5. Right-click on the application and select Deploy | metadata1 as shown in
Figure 7-28.

 6. Select the Export to Deployed Application option to upload the
customizations to an already deployed application on a server and follow
the wizard to complete the deployment.

FIGURE 7-27. Examine the content included in the MAR deployment profile.

07-ch07.indd 234 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 7: Customizing with Oracle JDeveloper 235

Summary
In this chapter, we discussed how to set up Oracle JDeveloper for customizations of
Fusion Applications. We discussed what roles to use for customizations and how to
identify artifacts to be customized from the run-time application. We covered
several use cases for JDeveloper customization, such as modifying LOV, adding new
business validation, modifying the search page, and adding a new attribute to an
application page. At the end we explained how to deploy these customizations to
an existing running application server.

FIGURE 7-28. Deploying the customizations using the MAR profile

07-ch07.indd 235 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

07-ch07.indd 236 11/12/13 12:07 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
8

Building a New
 User Interface with ADF

08-ch08.indd 237 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

238 Oracle Fusion Applications Development and Extensibility Handbook

In Chapter 6, we discussed how to define a new custom object and its workarea
pages and integrate with CRM applications. If you have a requirement to add
any non-CRM custom object, you will need to use JDeveloper. You may also

want to deploy your custom application to non-CRM containers, and in that case,
you will need to use JDeveloper to build this new application. In this chapter, we
will discuss basic steps to create a new object and its simple workarea pages and
integrate it with an existing application.

At a high level, you will need to do the following tasks to build a Fusion
Application extension:

 1. Create a new Fusion Application workspace with model and view controller
projects and import the necessary libraries to use the Fusion Application
base classes.

 2. Define a database schema for your extension application.

 3. Define ADF business components on your database schema for create, read,
update, and delete operations using your application user interfaces.

 4. Define validations, lists of values, labels, and business rules in your business
components.

 5. Define bounded task flows and declarative navigations for your application
flow and interactions.

 6. Add pages to your bounded task flows and add UI components per your
business needs.

 7. Build the page with a UI Shell template and include the task flows in your
page using menus.

 8. Enable security on your application and add deployment to a WebLogic
server to make it accessible to users.

How to Create a New Custom Application
You must set up JDeveloper following the steps in Chapter 7 before you begin building
a new application. Open JDeveloper in the “Fusion Applications Developer Role.”

 1. Click File | New and select Fusion Web Application (ADF) as shown in
Figure 8-1.

 2. Complete the Application Creation Wizard by giving the model project name
as ServiceRequestModel and the UI project name as ServiceRequestUi.

08-ch08.indd 238 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 239

Define the default package for model project as my.custom.apps.sr.model
and UI project as my.custom.apps.sr.ui. The new application is created in
JDeveloper with these projects as shown in Figure 8-2.

 3. The application overview page in JDeveloper helps you plan and guide
building your application artifacts and helps track the progress. There
are several steps in completing a Fusion Application extension, starting
from planning what you will be building to database schema, business
components, and model logic, UI flows, security, testing, and deployment
of your application.

FIGURE 8-1. Creating a new Fusion Web Application

08-ch08.indd 239 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

240 Oracle Fusion Applications Development and Extensibility Handbook

Plan Your Application
Application planning includes understanding the business requirements and deciding
on the implementation choice to meet those requirements. It is very important that
you first make sure that there is no way to configure out-of-the-box Fusion Application
functionality to meet the requirement. You should also first make sure that simple
customizations do not meet your business needs. Once you have concluded that you
must build your own custom application, do careful planning of the application
extension before you start building it.

In this chapter, we will build a service request object, similar to what we created
using CRM Application Composer in Chapter 6. We will build a service request
object with its search, create, and edit UI using JDeveloper. We will need to define a
new database table, new entity object, view object, application module, and new
ADF task flows for the UI and navigations. As you make progress on these
components, you can start marking this in the application overview page.

FIGURE 8-2. New application with model and UI projects in JDeveloper

08-ch08.indd 240 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 241

How to Define a New Schema
JDeveloper provides you with the necessary tools to build your database schema.
You can build your schema as an offline database and then apply that to any real
database that you deploy your application to. We will service a request and
response schema that will be used to build the sample application.

 1. Select File | New and choose the Offline Database option as shown in
Figure 8-3.

 2. Give the offline database a name and give the default schema as FUSION.

FIGURE 8-3. Defining a new offline database schema

08-ch08.indd 241 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

242 Oracle Fusion Applications Development and Extensibility Handbook

 3. Right-click on the FUSION schema and select the New Database Object |
New Table option as shown in Figure 8-4.

 4. Give your custom table name as XM_SERVICE_REQUEST and add the
columns as shown in Figure 8-5.

 5. Click the Advanced check box to go to the Detail Table wizard and add an
index on the SERVICE_REQUEST_NAME and REQUEST_DATE column so
that it can be used for search, as shown in Figure 8-6.

 6. Once you save this offline database table, you need a database connection
in your application where you want to apply this schema. Choose the Create
A Database Connection option as shown in Figure 8-7. Give the details for
the connection such as username, password, host, port, and SID.

FIGURE 8-4. Creating new schema objects

08-ch08.indd 242 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 243

 7. Right-click on the offline table file and choose Generate To | ApplicationDB
to apply to the database connection defined earlier, as shown in Figure 8-8.
This will generate the new table in the database specified by the connection.

 8. Similarly, define a service response table as shown in Figure 8-9 and apply
to your application database. Add an index on the SERVICE_REQUEST_ID,
SERVICE_RESPONSE_NAME, and RESPONSE_DATE columns.

FIGURE 8-5. Create a new database table and columns for service request.

08-ch08.indd 243 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

244 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 8-6. Adding an index to database tables

FIGURE 8-7. Defining a new database connection

08-ch08.indd 244 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 245

FIGURE 8-8. Deploying offline schema artifacts to the database

FIGURE 8-9. Create a service response database table.

08-ch08.indd 245 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

246 Oracle Fusion Applications Development and Extensibility Handbook

How to Define New
Business Components
We will now define new ADF business components for this application. Fusion
Applications are built with extensions for base ADF classes and are available for
your customization as well. These classes are available in the Application Core
library. We will need to add this library to our model project to use it as the base
class for our new ADF business components.

 1. Right-click on the model project, go to Project Properties, and select
Libraries and Classpath as shown in Figure 8-10.

FIGURE 8-10. Adding libraries to a model project

08-ch08.indd 246 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 247

 2. Click the Add Library button and choose Applications Core to add this
library to our model project as shown in the following illustration. Similarly,
add library BC4J Client and BC4J Service Runtime.

 3. From the application overview, click Go To Subtasks from the Build Business
Services task. Click the Create Entity Objects and Associations button as
shown in Figure 8-11. The other option is to use File | New | Business
Components | Business Components from Database Table.

 4. Follow the wizard and select the database connection and then search for
the two new tables we defined earlier, as shown in Figure 8-12.

08-ch08.indd 247 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

248 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 8-11. Creating entity objects and associations

FIGURE 8-12. Select database tables to create entity objects.

08-ch08.indd 248 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 249

 5. Do not select the view object and application module for now. Choose to
define the Business Components diagram as shown in Figure 8-13, and
complete the wizard.

FIGURE 8-13. Create a Business Components diagram.

08-ch08.indd 249 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

250 Oracle Fusion Applications Development and Extensibility Handbook

 6. Right-click on the EO and choose the New Default View Object option
to create a new editable VO for a given EO as shown in the following
illustration. Do this for both of the EOs.

 7. Right-click on the entity package and choose the New
Association option. Give the name of the association as
XmServiceRequestEOToXmServiceResponseEO. Select the cardinality as
1..* and join on ServiceRequestId as shown in Figure 8-14.

 8. Choose to expose the accessor in both sides of the association and mark the
association as composite (check the Composition Association check box), as
shown in Figure 8-15.

08-ch08.indd 250 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 251

FIGURE 8-14. Create an entity association.

FIGURE 8-15. Specify association accessors and other properties.

08-ch08.indd 251 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

252 Oracle Fusion Applications Development and Extensibility Handbook

 9. Right-click on the view package and choose the New View Link option. Give
the Name To View link as XmServiceRequestVOToXmServiceResponseVO.
Select the cardinality as 1..* and join on the association
XmServiceRequestEOToXmServiceResponseEO as shown in Figure 8-16.

 10. Expose the view link accessor in service request VO and name it
ServiceResponse as shown in Figure 8-17.

 11. Right-click on the model package and select the New Application Module
option. Give the name as ServiceRequestAM. Choose the service request
and response VO as parent-child as shown in Figure 8-18.

FIGURE 8-16. Create a view link based on association.

08-ch08.indd 252 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 253

FIGURE 8-18. Create a new application module and select view object instances.

FIGURE 8-17. Specify the view link accessor.

08-ch08.indd 253 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

254 Oracle Fusion Applications Development and Extensibility Handbook

 12. Build the model project. Right-click on the ServiceRequestAM and choose
Run as shown in the following illustration to test the model.

 13. This shows the AM tester with your model where you can query, create, and
update data. Double-click on the ServiceRequest VO instance to open and
see data. Click the green + icon to add new rows. Click Database Commit to
save changes. Figure 8-19 shows what the AM tester looks like.

Please read the “Building Your Business Services” section in the Fusion
Developer’s Guide for Oracle Application Development Framework (Oracle Fusion
Applications Edition) for more details on how to build your business components.

08-ch08.indd 254 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 255

How to Implement Business Logic
In Fusion Applications, most of the business logic is implemented in EO. In this
section, we will discuss how to generate primary key attribute values from a Fusion
unique ID generation scheme, how to set system columns, how to define
validations, how to define hints for attributes, and how to define a list of values for
attributes that will be used on UI.

 1. Open XmServiceRequestEO and go to the Attributes tab. Select the primary
key attribute SrId from the property inspector for the attribute, and set
Application Unique ID to true as shown in Figure 8-20. Set this property for
the other EO primary key as well.

 2. Now select the attribute CreatedBy and click the Edit icon, or double-click
to open and edit the attribute properties. Check the History Column check
box and select Created By from the list of values as shown in Figure 8-21.
Similarly, set this property for other WHO columns, such as CreationDate,
LastUpdateDate, LastUpdatedBy, and LastUpdateLogin. Set this for both
of the EOs.

FIGURE 8-19. Application module tester

08-ch08.indd 255 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

256 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 8-20. Specify properties to generate the primary key with Fusion unique
ID generation.

FIGURE 8-21. Set history attribute properties.

08-ch08.indd 256 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 257

 3. Now we will set default values for some of the attributes. Open the
ReportedDate attribute, set the Value Type as Expression, and provide Value
as adf.currentDateTime as shown in Figure 8-22. Mark the attribute as
Mandatory as well.

 4. Similarly, set the default value of attribute Status to literal value OPEN and
set the default value of attribute severity to literal value 3.

FIGURE 8-22. Specify the default value for an entity attribute.

08-ch08.indd 257 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

258 Oracle Fusion Applications Development and Extensibility Handbook

 5. Now we will define a rule to validate the value of attribute Status
against the lookup XM_SR_STATUS. Open the EO and go to the View
Accessors tab. Click the Add icon to create a new view accessor. Select
CommonLookupPVO from the Available View Objects list and name it
StatusLookup. Shuttle it to the View Accessors list as shown in Figure 8-23.

FIGURE 8-23. Add a new view accessor in entity object for validation.

08-ch08.indd 258 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 259

 6. Click the Edit icon and shuttle the ByLookupType View Criteria from the
Available list to the Selected list. Give the BindLookupType bind parameter
value “XM_SR_STATUS”. Give Order By as MEANING as shown in
Figure 8-24.

 7. Open the EO and go to the Business Rules tab. Click the Create New
Validator icon to add a new business rule.

FIGURE 8-24. Specify bind variable values for view accessor.

08-ch08.indd 259 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

260 Oracle Fusion Applications Development and Extensibility Handbook

 8. In the Add Validation Rule dialog, select Type as List. Select the attribute
as Status, Operator as In, and List Type as View Accessor Attribute. Choose
the attribute LookupCode from the list of available attributes from the view
accessor StatusLookup created earlier as shown in Figure 8-25. This rule
means that at run time, the value given for attribute Status will need to be
one in the list returned by a query generated by CommonLookupPVO where
LookupType is XM_SR_STATUS. Similarly, you can define other validations
based on your business rules. Please read the chapter “Defining Validation
and Business Rules Declaratively” in Fusion Developer’s Guide for Oracle
Application Development Framework (Oracle Fusion Applications Edition) to
understand more on how to define business rules.

FIGURE 8-25. Create a List type validation rule using view accessor.

08-ch08.indd 260 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 261

 9. Go to the Failure Handling tab and click the Search icon for Failure Message.
Select Application Messages and search for %LOOK%. We are picking an
existing application message in this validation. You can define your own
message using the Manage Application Messages task in FSM. Select a
message as shown in Figure 8-26.

FIGURE 8-26. Specify a validation error message.

08-ch08.indd 261 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

262 Oracle Fusion Applications Development and Extensibility Handbook

 10. Provide the values of the token in the message. Give the lookup type as
“XM_SR_STATUS” and column as source.hints.Status.label so that at run
time, the validation message will show the user-defined label for the Status
column as shown in Figure 8-27.

FIGURE 8-27. Specify token values for the validation error message.

08-ch08.indd 262 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 263

 11. Run the AM tester again and create a new Service Request row. Notice that it
defaults to the attribute values as defined earlier. Change the Status attribute
to OPEN_test, and save. This will throw a validation error message as shown
in Figure 8-28.

FIGURE 8-28. Test the validation and error message using the application module tester.

08-ch08.indd 263 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

264 Oracle Fusion Applications Development and Extensibility Handbook

How to Define the
Application Navigation Flow
In this section, we will discuss how to define your application navigation flow.
Fusion Applications are built using bounded task flows, and navigations are defined
declaratively in the task flow. Please read the “Creating ADF Task Flows” section in
Fusion Developer’s Guide for Oracle Application Development Framework (Oracle
Fusion Applications Edition) to understand more about task flows and navigation in
Fusion Applications. We will define a simple application flow to navigate between
search, create, and edit pages for service request and service response.

 1. Go to the UI project properties and add the Application Core (View
Controller) library to the project. This library is needed to get Fusion
Application–specific components to build the application pages.

 2. Right-click on Project and click New. Choose ADF Task Flow to create a new
bounded task flow as shown in Figure 8-29.

FIGURE 8-29. Create a new ADF task flow.

08-ch08.indd 264 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 265

 3. Name the TF as XmServiceRequestSearchTF and give the right package. Keep
the default options for Bounded Task Flow and Page Fragments, as shown here.

 4. From the Component palette, drag and drop View activity on the task flow
and name it ServiceRequestSearch as shown in the following illustration.
This is the first page in our flow to search the service requests.

08-ch08.indd 265 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

266 Oracle Fusion Applications Development and Extensibility Handbook

 5. Similarly, create a new task flow XmServiceRequestCreateTF and
XmServiceRequestEditTF for create and edit. Drag and drop view activity
in each of these task flows, and name them ServiceRequestCreate and
ServiceRequestEdit respectively.

 Drag and drop these two task flows onto XmServiceRequestSearchTF as
shown in Figure 8-30.

FIGURE 8-30. Add task flow call activities for create and edit on search task flow.

08-ch08.indd 266 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 267

 6. From the Component palette, select Control Flow Case. Click on the
ServiceRequestSearch activity in the task flow and then click on CreateTF
Activity as shown here.

 7. Name the navigation case as create. Similarly, define the control flow
between search and edit activity and name it edit. Now define the control
flow from create to search and edit to search activity, name those as return,
and save as shown here.

08-ch08.indd 267 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

268 Oracle Fusion Applications Development and Extensibility Handbook

 8. Open the Create TF and drag and drop the Task Flow Return Activity and
name it cancel.

 9. Add another TF return activity and name it save. Add control flow from the
create activity to cancel and save TF return activity and name it accordingly
as shown in the following illustration. The Outcome for the save return
activity is “save” so when that return navigation happens, the Search TF will
use “save” control flow navigation.

08-ch08.indd 268 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 269

 10. Now we will set the properties on the task flows for their transaction
behavior. There are two properties that dictate how the task flows behave.
The transaction property decides if the TF will start a new transaction or
participate in an existing transaction. The data control property decides if
the TF will share the data with the caller page or not. Set the transaction to
“Always Begin New Transaction” and “Share Data Controls with Calling Task
Flow” for the search TF as shown here.

 11. Set the new transaction and uncheck Share Data Controls with Calling
Task Flow.

 12. Set the existing transaction with shared data control for edit TF.

 13. Now that we have defined the task flow transaction behavior, we will define
the behavior on TF return. Select the cancel return activity and set the End
Transaction property to rollback as shown in Figure 8-31. Select the save return
activity and set the end transaction to commit. This means when the TF is
ended with either cancel or save navigation return, the changes made in the
TF will be either discarded or saved.

 14. Similarly, we need to add commit and rollback logic to Edit TF. We have set
up Edit TF to share the transaction so the TF commit and rollback happens
only when the parent TF does the commit or rollback. Drag and drop
commit and rollback.

08-ch08.indd 269 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

270 Oracle Fusion Applications Development and Extensibility Handbook

How to Define Application Pages
In this section we will define the pages inside the task flow. We have added a view
activity in each TF and we will add content to that. Please read the chapter “Creating
a Databound Web User Interface” in Fusion Developer’s Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

FIGURE 8-31. Setting task flow end transaction behavior on return activities

08-ch08.indd 270 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 271

 1. The application pages inherit several UI hints from the model such as label,
display width, and so on. You can specify these at the UI layer as well,
but it is recommended that you do it at the model so that every UI gets it
automatically. Open the ServiceRequestName attribute in the EO and go to
Control Hints. Provide the Label Text as Request Name and Display Width
as 30 as shown in Figure 8-32.

 2. Similarly, set the display width and label for all attributes that will be shown
on the UI.

FIGURE 8-32. Specifying control hint properties for an entity attribute

08-ch08.indd 271 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

272 Oracle Fusion Applications Development and Extensibility Handbook

 3. Now we are ready to define the UI page. First we will build the search page.
The search page is declaratively built using view criteria and an ADF query
component. Open the service request VO and define a view criteria with
attributes that you want to enable search on as shown in Figure 8-33.

 4. Go to the UI Hints tab and give the Display Name as Search Service Request
for the view criteria. Check the Show in List box. This will show up in a
saved search at run time on the search page.

FIGURE 8-33. Create a view criteria for the search page.

08-ch08.indd 272 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 273

 5. Now we will define a List of Values for the Status attribute so that the UI
presents an LOV to the user to pick the values from. Define a view accessor
StatusLOV to CommonLookupsPVO as we defined on the EO, and bind the
right parameters. Go to the Status attribute in service request VO and click
the Add List of Values button as shown in Figure 8-34.

 6. Select the List Data Source as StatusLOV and List Attribute as LookupCode as
shown in Figure 8-35.

FIGURE 8-34. Adding a list of values to an attribute in a view object

08-ch08.indd 273 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

274 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 8-35. Specifying attribute mappings for the list of values

 7. Go to the UI Hints tab and for Default List Type, choose Choice List. Select
the display attribute as Meaning so that a user-friendly value is shown on the
UI instead of internal code, as shown in Figure 8-36.

 8. Similarly, define LOV on the severity attribute.

08-ch08.indd 274 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 275

 9. Now double-click on the ServiceRequestSearch view activity in the search TF.
Give the name and directory path for the JSFF as shown in Figure 8-37. This
will create an empty page where we will add content for the search page.

 10. To build the page and bind it to the model, ADF makes the AM available
as data control by default. You can select the ServiceRequestSearch view

FIGURE 8-36. Specifying UI hints for list of values definition

08-ch08.indd 275 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

276 Oracle Fusion Applications Development and Extensibility Handbook

criteria from the Data Controls palette on the left-hand side as shown in the
following illustration.

FIGURE 8-37. Create a new page fragment.

08-ch08.indd 276 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 277

 11. Drag and drop this view criteria on the JSFF. Choose the ADF Query Panel
option to build the search page.

 12. Now drag and drop the ServiceRequest VO instance from data control on the
page and choose the Applications | Table option.

 13. From the Create Table dialog, enable single-row selection, sorting, and
filtering. Mark it as a read-only table. Remove the attributes that you do
not want to show on the result table using the Delete icon as shown in the
following illustration. Change Status and Severity to ADF Select One Choice
so that the UI shows user-friendly meaning and click the Continue button.

08-ch08.indd 277 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

278 Oracle Fusion Applications Development and Extensibility Handbook

Once the page is created, set the property readonly = true for the Status and
Severity fields.

 14. In the Configure Table Patterns dialog, enable Create and Edit with Page
pattern and enable Export.

08-ch08.indd 278 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 279

 15. Select the query component in the structure window and move it out of the
extra af:panelHeader component. Move the fnd:applicationsTable component
under the af:panelHeader. Change the query component Header Text
property to “Search Service Request” and the af:panelHeader text property
to Results. The components should look like the following illustration.

 16. Select the query component and select Edit for ResultComponentId as shown
in the following illustration. Select the af:table from the editor so that the
search and result are connected on the UI.

08-ch08.indd 279 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

280 Oracle Fusion Applications Development and Extensibility Handbook

 17. Similarly, double-click on the view activity on create and edit TF to create
the JSFF. Right-click on the JSFF root in the structure window and select the
Insert Inside | Applications | Panel option as shown in Figure 8-38.

 18. From the Application Panel dialog, give the Panel Title as “Create Service
Request” and click Next. On the Components page, check Bind Data Now
and select ServiceRequestAMDataControl.ServiceRequest from the Browse
menu. Delete the attributes you do not want to show on the UI as shown in
Figure 8-39.

 19. In the Page Buttons section, choose Save and Close for the Submit slot and
Cancel for the Cancel slot.

 20. Complete the wizard and select the application panel on JSFF or the
structure window. Go to properties and scroll down to the Page Buttons
section. Go to slot 3 and select the Save and Close button. Select the Action
value as “save” from the drop-down as shown in Figure 8-40. This is the
value we have defined in the create TF for navigation to TF return with
commit. Similarly, select the cancel action for the Cancel button from slot 4.

08-ch08.indd 280 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 281

FIGURE 8-38. Add applications panel to create a service request page.

FIGURE 8-39. Specify a create service request page attribute.

08-ch08.indd 281 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

282 Oracle Fusion Applications Development and Extensibility Handbook

 21. Now that the page is defined,
we need to make sure that
the new row is created in the
model when users navigate
to this page. For this, use an
ADF data control standard
operation on the VO to create
and insert a blank row. Select
the CreateInsert operation
from the data control as
shown here and drop it on
the Create TF.

FIGURE 8-40. Specify action values for buttons in application panel.

08-ch08.indd 282 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 283

 22. Define a Control Flow Case between the CreateInsert method activity and
the ServiceRequestCreate view activity. Select the CreateInsert method
activity and make it a default activity for this TF so that it is executed first
when TF is loaded as shown here.

 23. Similarly, define the edit page and add an application panel with Save
and Close and Cancel buttons. Add a new af:panelHeader below
af:panelformLayout where
we will add a service
response child table. From
the data control, select the
ServiceResponse child of
ServiceRequest and drop
it inside af:panelHeader as
Application Table as shown
at right. Complete the wizard
by selecting the attributes you
want to show. Do not mark
this as a read-only table.
Enable create and edit pattern
as inline on this table.

08-ch08.indd 283 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

284 Oracle Fusion Applications Development and Extensibility Handbook

 24. For the edit page, we do not need to do any model query execution in this
TF because the edit TF shares the transaction and data control with the
parent TF. So, when the user searches and selects a row to edit, the page on
edit TF will show the currently selected row in the VO from search page.
For the service response, since we are using a child view link from service
request, it will automatically show only the service response applicable for
the given service request.

 25. Select the application panel on the edit page and change the Title property
to #{servicerequestuiBundle.EDIT_SERVICE_REQUEST}: #{bindings.
ServiceRequestName.inputValue}. This will show the name of the service
request you are editing in the title of the edit page.

 26. We defined edit TF to share data control. This also means that the commit
and rollback from the return activity will not get saved until the parent
data control frame calls commit or rollback. We will need to add managed
bean code to do this. Select the Save button in the applicationPanel property
inspector and specify Action Listener. Create a new class, ServiceRequestEdit,
and give the method name Save. Choose the bean scope as request.

 27. Similarly, define Action Listener for the Cancel button to the same bean class
and method called Cancel. Set the content of the bean method as follows.

package my.custom.sr.ui.bean;

import java.util.Map;

import javax.faces.context.FacesContext;

import javax.faces.event.ActionEvent;

import oracle.adf.model.BindingContext;

import oracle.adf.model.DataControlFrame;

public class ServiceRequestEdit {

 public ServiceRequestEdit() {

 }

 public void save(ActionEvent actionEvent) {

 DataControlFrame dcFrame = getDataControlFrame();

 dcFrame.commit();

 dcFrame.beginTransaction(null);

 }

 public void cancel(ActionEvent actionEvent) {

 DataControlFrame dcFrame = getDataControlFrame();

 dcFrame.rollback();

 dcFrame.beginTransaction(null);

 }

 public static DataControlFrame getDataControlFrame() {

 Map sessionMap =

 FacesContext.getCurrentInstance().getExternalContext().getSessionMap();

08-ch08.indd 284 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 285

 BindingContext context =

 (BindingContext)sessionMap.get(BindingContext.CONTEXT_ID);

 String currentFrameName = context.getCurrentDataControlFrame();

 DataControlFrame dcFrame =

 context.findDataControlFrame(currentFrameName);

 return dcFrame;

 }

}

 28. Go to the Overview tab on the task flow and go to Managed Beans. Notice
the new Java class you defined for the listeners is registered as request scope
managed bean on this task flow.

How to Integrate with UI Shell
The application flow is built using bounded task flows, and you cannot run the
bounded TF directly. Now that we have application pages along with model
integration and navigation flow defined, we need to define a page that can be set as
run target. The ADF application needs a JSPX page to be set as run target. Fusion
Applications come with a UI Shell template that you can use for your JSPX page so
that other common features of the Fusion Application such as Navigator menu,
preferences, logout link, and so on, are available on your page when it is integrated
with existing Fusion Application deployment. Please read the chapter
“Implementing the UI Shell” in the Fusion Applications Developer’s Guide.

 1. Open the adfc-config.xml file and add a View activity from the Component
palette and name it ServiceRequestWorkarea. Double-click on the view
activity to create a JSPX page. Choose the right package and select a page
template as UI Shell as shown in Figure 8-41.

 2. This JSPX page is just the container for the UI Shell template. All other page
content items, such as the regional, local, and contextual area flows and
the task list, are defined independently. At run time, the menu definition
assembles the content in various regions on the page. All task flows are
loaded into a page created with the UI Shell template by configuring the
Menu file.

08-ch08.indd 285 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

286 Oracle Fusion Applications Development and Extensibility Handbook

 3. Right-click on the JSPX page in the application navigator and choose the
Create Applications Menu option as shown in Figure 8-42. This creates an
empty menu file that we will use to put details about the content for the
actual application workarea pages.

 4. Right-click on the itemNode in the menu file and choose the Insert Inside
itemNode option.

FIGURE 8-41. Define a page using UI Shell template.

08-ch08.indd 286 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 287

 5. Provide the id as ServiceRequestWorkarea_search and choose focusViewId
as /ServiceRequestWorkarea.

 6. Select this newly created item node and go to the property inspector. Set
the properties label = Service Requests, Task Type = defaultMain, Task Flow
Id = select XmServiceRequestTF.xml using the browser icon as shown in
Figure 8-43.

 7. Right-click on the adfc-config.xml file and choose Run. This will show the
search service request page and you can navigate to create and edit service
request pages from there.

FIGURE 8-42. Create an applications menu and associate with the page.

08-ch08.indd 287 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

288 Oracle Fusion Applications Development and Extensibility Handbook

 8. You can add a task pane in the menu by inserting a new itemNode and
move it as the first child above the dynamicMain itemNode. Set the Id and
focusViewId as before. Set the label as label=”#{applcoreBundle.TASKS}”
and Task Type=”defaultRegional”, taskFlowId=”/WEB-INF/oracle/apps/fnd/
applcore/patterns/uishell/ui/publicFlow/TasksList.xml#TasksList”, parameters
List=”fndPageParams=#{pageFlowScope.fndPageParams}”.

 9. Now add a new itemNode and set the label = Create Service Request, Task
Type = dynamicMain, and specify the XmServiceRequestCreateTF. This adds
a link under the task pane and will open the create service request page
when you click on the link at run time. When you run the application now
and click the Search button, the run-time page looks like the example in
Figure 8-44. You can go to the create and edit pages and make changes.

 10. You can adjust the application page and field look and feel and layout per
your needs following the Fusion Applications Developer’s Guide.

 11. Similarly, you can add more itemNodes and give a TF Id if you want to add
more regional areas. Each node creates a new regional area section. You
specify the Task Type as defaultRegional for the itemNode.

FIGURE 8-43. Specify the default task flow to be used for the page.

08-ch08.indd 288 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 289

How to Secure the Application
Fusion Applications are secured and you need an authenticated user with applicable
roles to access the application flows. There are two main tasks to secure your new
custom application so that it works seamlessly with existing Fusion Applications.

Enable Security
The new Fusion Application you built in JDeveloper is not secured by default. To
enable security on your application, follow these steps.

 1. Select the Application menu and select the Secure | Configure ADF Security
menu option as shown in Figure 8-45.

FIGURE 8-44. Service request workarea run-time page

08-ch08.indd 289 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

290 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 8-45. Securing the ADF Web application

 2. Choose ADF Authentication and Authorization on Step 1 as shown in the
following illustration.

08-ch08.indd 290 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 291

 3. Choose your UI project from the Web Project drop-down and HTTP Basic
Authentication for Authentication Type on Step 2.

 4. Select No Automatic Grants on Step 3.

 5. Do not select Redirect on Step 4.

 6. Complete the wizard. This enables security on your application and all
the task flow and JSPX on your application are now secured. The wizard
modifies several configuration files such as adf-config.xml, jps-config.xml,
and jazn-data.xml to include these security configurations.

Add Permissions
How to customize Fusion Application security is discussed in Chapter 4 of this
book. You will need to use some of the concepts discussed in that chapter to add
permissions for your application artifacts so that they can be accessed by end users.
You need to define necessary privileges, duties, and roles to access your application
flows. Then use those privileges to give permission to the task flow and JSPX
pageDef. There are two ways to add these permissions and propagate them to run-
time Fusion Application deployment, using Application Policy Manager or using
XML-based security policy store.

Using Applications Policy Manager
Once you have used APM to define necessary privileges for your application, you
can add the permissions to your artifacts in APM. You first need to define the
resource for the task flows and JXPS pageDef. Once these resources are defined, you
need to add entitlements to these resources under appropriate roles. Please read
Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s
Guide (Oracle Fusion Applications Edition) to understand more about how to
execute these steps.

Using jazn-data.xml
The Fusion Applications are configured with an active LDAP for authentication and
authorizations. Your applications administrator can extract the policy store from the
LDAP server into an XML-based policy store called jazn-data.xml. Read more
information about how to generate this file in the “Securing Oracle Fusion
Applications” chapter of the Oracle Fusion Applications Administrator’s Guide.
Once you have the jazn-data.xml file from your Fusion Applications, you can use
the security editor in JDeveloper to add necessary permissions. Once these permissions
are defined in JDeveloper, the administrator will need to export these changes to the
policy store to merge it with existing Fusion Applications policies.

08-ch08.indd 291 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

292 Oracle Fusion Applications Development and Extensibility Handbook

How to Deploy and Integrate
with Fusion Applications
Every Fusion Application is deployed as an Enterprise Achieve (ear) file on the
application server. To incorporate your new custom application along with an
existing Fusion Application deployed on a server, you need to package these
artifacts into an ADF library jar file and place the jar files in the proper location
within the application. To define an ADF library, go to the project property for your
model and UI project and choose Deployment. Define a new ADF Library jar file
and give it a name such as XmAdfServiceRequestUi as shown in Figure 8-46.

Right-click on your project and choose the Deploy option to generate the
ADF Library jar file. Once you have generated both model and UI jar files, your
administrator needs to put these jar files in the existing Fusion Application deployed
ear location. The ADF library jar for the new model artifacts should be placed into the
<ExplodedEarDirectory>/APP-INF/lib directory (for example, /fusionapps/applications/
hcm/deploy/EarHcmCore.ear/APP-INF/lib/ XmAdfServiceRequestModel.jar). The ADF
Library jar for the new UI artifacts should be placed in the
<ExploadedWarDirectory>/WEB-INF/lib directory.

FIGURE 8-46. Defining a deployment profile of type ADF Library jar file

08-ch08.indd 292 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 8: Building a New User Interface with ADF 293

Once this is done, you can integrate your application by adding a new menu
entry in the Navigator menu using the setup task “Manage Menu Customizations”
from Functional Setup Manager accessed via the Setup and Maintenance link from
the Navigator menu under the Tools category.

Summary
In this chapter, we discussed how to design a custom Fusion Application and what
are the building blocks of such an application. We started with defining a database
schema for the application, and we built ADF business components such as EO, VO,
and application modules. We defined business logic and validations and discussed
how to set UI hints and other attribute properties. We discussed how to define
application navigation flows and incorporate application pages with content.
We defined a JSPX page with UI Shell template and configured menu. Finally we
discussed how to secure Fusion Applications and deploy them.

08-ch08.indd 293 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

08-ch08.indd 294 11/12/13 12:45 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
9

Business Process
Management (BPM) in

Fusion Applications

09-ch09.indd 295 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

296 Oracle Fusion Applications Development and Extensibility Handbook

Oracle Business Process Management (BPM) Suite is yet another Oracle
Fusion Middleware technology that is used in Fusion Applications, albeit
on a very small scale in the current releases. As the name suggests, BPM is

all about making efficient, agile, and optimized business processes and workflows,
and Oracle BPM Suite supports the full lifecycle of business processes including
design, modeling, implementation, deployment, administration, and monitoring.

Most ERP and CRM products deployed in the cloud or at a customer site (on-
premise) require the capability to deliver streamlined business processes that often
incorporate human tasks through various types of notifications and messages such as
approval e-mails and automated activities for retrieving approval hierarchies or
expense report limits from an application’s database. In Oracle E-Business Suite, it is
the Oracle Workflow product that allows users to visually capture business
processes that are mapped to various functions within E-Business Suite, while in
Fusion Applications in the current releases (up to and including 11.1.6), it is the
products from Oracle SOA rather than the Oracle BPM product offering that are
most often used to manage business process orchestration and integration.

The reasons for the prevalent use of Oracle SOA in favor of Oracle BPM in
Fusion Applications probably lie in the recent history of the global mergers and
acquisitions activity in the IT sector, in which Oracle Corporation played a very
active role. In 2004, Oracle announced the acquisition of Collaxa and the intention
to incorporate its business process automation software into Oracle middleware
products such as Application Server 10g. Collaxa was one of the first companies to
build its product around Business Process Execution Language (BPEL), which after
acquisition became known as Oracle BPEL Process Manager. Even today the BPEL
Process Manager is still one of the key components of Oracle SOA Suite 11g. In
2008, Oracle acquired BEA Systems, which had its own BPM product called
Aqualogic BPM, based on BPMN (Business Process Model and Notation). By the
time Oracle managed to incorporate BEA’s BPM tool into Oracle’s Fusion
Middleware product offering, the effort of building Fusion Applications from the
ground up was well under way.

With that said, in this chapter we going to cover use cases for Oracle BPM
customization very briefly, as there are only a couple of BPM processes in the
Human Capital Management (HCM) product family shipped with the current
releases of Fusion Applications, as opposed to hundreds of Oracle SOA-based
composites, which are covered in the next chapter in proportionately more detail.

Oracle BPM in Fusion Applications:
Architecture and Tools Overview
As far as run-time architecture is concerned, both Oracle SOA and BPM share the
same server infrastructure based on Service Component Architecture (SCA). In fact,
Oracle BPM 11g is installed on top of Oracle SOA 11g, and BPM leverages SOA

09-ch09.indd 296 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 297

Suite components such as Human Workflow and Business Rules. The use of
interrelated modeling components is made possible by unifying all of the components
into a single run-time service infrastructure inside Oracle Fusion Middleware.

In addition to the run-time environment, Oracle BPM provides the following
design-time tools:

 ■ BPM Studio Offers modeling and development capability and is installed
as a plug-in to JDeveloper

 ■ Process Composer Web-based modeling interface targeted to be used by
business analysts for high-level process modeling

The diagram in Figure 9-1 provides an overview of the system components and
actors involved, which most noticeably features BPM Meta Data Repository (MDS)
and run-time engines including the BPMN service engine in addition to design-time
tools like BPM Studio and BPM Process Composer.

FIGURE 9-1. Oracle BPM design tools, BPM, and SOA run-time engines

BPM Process
Composer

JDeveloper BPM Studio
(Modeler)

BPMN BPEL
Human

Work�ow

Mediator
Business

Rules

Uni�ed Run-time Engines

WebLogic Server

BPM MDS
 (e.g. HCM_FUSION
_MDS_SOA schema)

Oracle Enterprise
Manager (EM)

Developer Business
Analyst

Developers,
System Admins

Oracle BPM
Workspace

Users

09-ch09.indd 297 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

298 Oracle Fusion Applications Development and Extensibility Handbook

We’ll now further examine the run-time architecture and guide readers on how
to access and look for BPM processes in Fusion Applications.

BPMN Component Run-time Environment
As illustrated in Figure 9-1, both BPMN and BPEL engines execute within one unified
environment inside the WebLogic server built on top of Service Component
Architecture (SCA). SCA is an open standard managed by OASIS (http://www.oasis-
opencsa.org), which is embraced by Oracle and helps promote open standards in
implementing services. There are many ways and methodologies to implement
services, and they range from vendor-specific implementations like Tuxedo, to SCA,
the open standard for SOA-style implementations. SCA provides a model for service
composition and their reuse; therefore, BPMN components are deployed as part of
the SOA composite and at run time appear just like any SOA composite component
(Figure 9-2).

FIGURE 9-2. Flow trace of a running BPMN component in Enterprise Manager

09-ch09.indd 298 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 299

In Chapter 1, we mentioned that each application pillar or product family like
Human Capital Management (HCM) has its own SOA server cluster inside its
domain. Therefore, all the running instances of the BPMN processes and deployed
SOA composites can be found by accessing Enterprise Manager Fusion Applications
Control for the corresponding domain (http://host:port/em).

NOTE
BPEL and BPMN service engines share a common
process core for shared components that handle
instance dehydration, service invocation, timer
scheduling, and so forth.

BPMN Design Tools
Oracle BPM offers two modeling tools for the design of BPMN processes:

 ■ BPM Studio Plug-in to JDeveloper, normally used by technical developers
to create service catalogs, provide service implementations, create and
extend BPM templates, and so forth

 ■ BPM Process Composer Process modeling geared toward business analysts
and the business process owner type of end user

In order to facilitate the collaborative modeling and design approach between
implementation detail, usually performed by BPMN/SOA developers using the
JDeveloper tool, and high-level business process design performed by business
analysts, the BPM tooling architecture is connected by a central Meta Data Services
(MDS) component called BPM MDS, as shown in Figure 9-3.

The BPM MDS repository is a BPM project-sharing enabler that allows bottom-
up and top-down approaches in the designing and modeling of business processes.
For example, developers can create a BPM process catalog of services and business
rules and publish it via BPM MDS as a template, which could subsequently be used
by the business analysts and process owners to create BPMN diagrams and processes
inside the BPM Process Composer tool. On the other hand, in the top-down design
approach, the process owners could first design the outline of the business process
using BPM Process Composer, and publish (save) it into the BPM MDS repository for
sharing with IT, that is, process-implementation developers who will later provide
the concrete implementation for the BPMN activities that require wiring with the
Web and other services deployed on the server.

09-ch09.indd 299 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

300 Oracle Fusion Applications Development and Extensibility Handbook

Connecting to BPM MDS Repository from JDeveloper
The BPM MDS repository partition is called Oracle BPM Meta Data Service or
OBMP MDS. As already mentioned, BPM MDS provides integration and sharing
capabilities between the two main design and modeling tools: JDeveloper and BPM
Business Process Composer. In order to access the repository partition from JDeveloper
via BPM MDS Navigator, we first need to create a BPM MDS connection to it.
However, the prerequisite to a BPM MDS connection is to have available an SOA
MDS connection as well as the connection to the “soainfra” server deployed in the
WebLogic domain of interest, for example, HCMDomain.

NOTE
As always when working with Fusion Applications,
we use JDeveloper with Fusion Applications
Extensions, which is set up as explained in Chapter 7.

FIGURE 9-3. BPM design tools and BPM MDS repository

BPMN Server

Publish

Export

Lock

Publish

Deploy

Deploy

BPM Studio in JDeveloper Browser-based BPM Process Composer

BPM MDS
 (e.g. HCM_FUSION
_MDS_SOA schema)

09-ch09.indd 300 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 301

Figure 9-4 shows the two main steps required to connect to the BPM MDS. Note
that at the current time only the HCM product family has one BPM process
deployed at run time and three BPM templates published in the BPM MDS
repository. Following is a summary of the steps required to create a BPM MDS
connection to the HCM WebLogic domain:

 1. Create a database connection in the Resource Palette: select View | Resource
Palette from the main menu, right-click New Connection, and then select
Database. Here we specify the HCM_FUSION_MDS_SOA database user
name and corresponding password along with other parameters required to
connect to the database (hostname, port, and DB SID).

 2. Create an SOA MDS connection, give it a name like HcmMdsConn, choose
the database connection from the previous step, and make sure to select
obpm as MDS partition.

 3. In the Resource Palette, create a new BPM MDS connection by selecting the
SOA MDS connection HcmMdsConn created in the previous step.

It is possible to create a BPM MDS connection using a different sequence of
steps, but what matters is that we can view the content of the BPM MDS repository
as illustrated in Figure 9-5.

Generally, developers create BPM implementation-ready templates that include
fully designed and developed implementation artifacts and publish them into a BPM
MDS repository so that business process owners can use them to further model

FIGURE 9-4. Creating a BPM MDS Connection in JDeveloper

09-ch09.indd 301 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

302 Oracle Fusion Applications Development and Extensibility Handbook

processes via a business analyst–friendly BPM Composer tool. The published templates
are available in the Templates root folder in the BPM MDS Navigator (Figure 9-5).

NOTE
The current Fusion Applications Extensibility Guide
suggests that developers can customize and extend
project templates when it is necessary to customize
and extend business catalog components that are
part of the default project templates. However,
the Extensibility Guide also stresses that when
customizing a project template, developers must first
make a copy of the existing template using JDeveloper
to avoid overwriting the project templates previously
published into the BPM MDS repository.

Accessing BPM Process Composer in Fusion Applications
BPM Process Composer is intended for use by business analysts and process owners
who are familiar with BPMN modeling notation. It is a browser-based tool that
allows users to design BPM processes that use standard BPMN activities, business
rules, and human tasks.

At the current time there are only three BPM templates shipped with Fusion
Applications:

 ■ HcmCommonProcessesOnboardWorker

 ■ HcmCommonProcessesPreboardWorker

 ■ HcmCommonProcessesOnboardEnterpriseWorker

FIGURE 9-5. HCM product family BPM templates available in BPM MDS Navigator

09-ch09.indd 302 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 303

You’ve already gathered that all three are from the HCM product family and they all
relate to the Worker Hiring business process area in HCM.

To access BPM Process Composer, we go to http://host:port/bpm/composer and
log in as a user who has access to it. Once logged in to BPM Composer, the analysts
can explore deployed run-time projects as shown in Figure 9-6, view projects
owned by them, and most importantly, they can create new projects based on
published BPM templates or even without templates.

In the next section we take a look at a simple example of BPM process
customization using BPM Business Process Composer.

FIGURE 9-6. BPM Process Composer home page

09-ch09.indd 303 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

304 Oracle Fusion Applications Development and Extensibility Handbook

Example of BPM Process Customization
Based on an Existing Template
in Process Composer
Suppose that the process owner in the Human Resources department wants to create
a customized BPMN process based on the HcmCommonProcessesOnboardWorker
template in the development Fusion Applications instance for testing purposes by
adding BPMN script activity to default the legislation code to a certain value. As
mentioned in the previous section, in order to be able to access the BPM Composer
screens, the process owner needs to have adequate user privileges such as
Application Implementation Consultant assigned to their username.

We’ve also mentioned that the Fusion Applications HCM product family ships
with the HcmCommonProcessesOnboardWorker BPM template that can be used to
create the new project in BPM Composer. We’ll now outline the summary of steps
required to create such project.

First of all, we click the New Project button and populate the Name and
Description text fields with an appropriate name and a description of the project as
shown in Figure 9-7.

Because we want our custom project to be based on the existing template,
we also need to make sure to tick the Use Template check box and select
HcmCommonProcessesOnboardWorker from the list. We then click the Next
button, which opens the Deployment Options screen (not shown), where we specify
the value None for the Approval Workflow field. This means that no approval will be
required when saving and publishing this process. Clicking the Next button again
allows us to select the visibility of our process, and here we choose Public visibility
so it is shared with everyone. Last, we click the Finish button to complete the New
Project Creation Wizard, which opens our XxOnboardWorker01 process as shown
in Figure 9-8.

An open project like the one shown in Figure 9-8 displays summary information
about the project including whether the project is locked or in edit mode, if sharing
is enabled, the approval workflow, and other details. The main area of the open
project page displays key project artifacts: processes, business rules, and human tasks.

09-ch09.indd 304 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 305

We can see that our project based on the HcmCommonProcessesOnboardWorker
template has one process called OnboardWorker that we want to customize, and
because the project is in the edit mode, we should be able to customize the process
by clicking on it. Our requirement was to default the legislation code to a fixed
value when the process is launched, and to achieve that, we drag and drop at the
first transition in the process a script activity that we called XxSetLegislation. At this
point we can validate our design in BPM Composer by clicking the Validate button
in the top menu. Figure 9-9 shows the BPM process with added XxSetLegislation
script activity and confirmation of the successful process validation.

FIGURE 9-7. Creating a new project based on an existing template

09-ch09.indd 305 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

306 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 9-8. Custom BPM process opened in Process Composer

Now we click the Save and Release button, which will make our project
available to be shared with IT for further work on this process; for example, they
would need to create appropriate data mappings between the process input object
and the added script activity XxSetLegislation.

Once the development cycle is completed by deploying the BPMN process as a
running composite inside HCMDomain’s soa_server cluster, we need to find a
mechanism for invoking it by an appropriate function in a deployed HCM application.
There is no hard and fast rule as to what is the best way to do this; the best practice
is to review the product documentation including the implementation guides for a

09-ch09.indd 306 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 9: Business Process Management (BPM) in Fusion Applications 307

clue on how to invoke this process at run time by an application. For example, there
is nothing to stop us from deploying an SOA composite that contains the customized
BPMN using the same composite name but a different revision ID; however, obviously
this makes configuration management more complex and has other disadvantages.
Careful observers would also notice that in HCM there is a task accessible from
Functional Setup Manager (FSM) that allows registering a custom Workforce business
process. However, in the current Oracle Fusion Applications Workforce Deployment
Implementation Guide, there is no mention of how to use it.

Alternatively, most Fusion Applications products raise business events through
SOA EDN (Event Delivery Network), and that is one of the best ways to initiate a
custom process, as start activity in Oracle BPM can be based on an event. We’ll
cover events in more detail in subsequent chapters, most notably Chapter 10 and
Chapter 15.

FIGURE 9-9. Validation successful after adding script activity

Drag and drop BPMN script activity on the first transition in the
process, name it XxSetLegislation, and click the Validate button.

09-ch09.indd 307 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

308 Oracle Fusion Applications Development and Extensibility Handbook

Summary
In this chapter we introduced Oracle BPM in Fusion Applications only briefly, and
the primary reason for that is that in the current releases of Fusion Applications, the
main orchestration tools are coming from Oracle SOA 11g rather than the Oracle
BPM product offering. That is to say that BPEL is favored over BPMN, but this could
easily change in the future as Oracle BPM has some really powerful features that we
are sure could be used in Fusion Applications quite effectively.

We listed the BPM design and modeling tools available, went through some
detail on how to set up a BPM modeler available in JDeveloper, and also provided
an overview of how to create a project based on a BPM template from BPM Process
Composer, which is one of the favorite techniques of Oracle BPM practitioners.

09-ch09.indd 308 11/12/13 12:16 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
10

Run-time and Design-time
Customizations of SOA
Components in Fusion

Applications

10-ch10.indd 309 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

310 Oracle Fusion Applications Development and Extensibility Handbook

Service-oriented architecture (SOA) is often described as a strategy for developing
and integrating systems through interoperable standards-based services.
Fusion Applications leverage the capabilities of Oracle SOA Suite 11g to

provide service-enabled enterprise applications that can be integrated into SOA.

Oracle SOA Suite 11g consists of a number of processing service engines, and in
this chapter we are going to focus on the customization and extension aspects of the
following:

 ■ Human task implementations that execute inside the Human Workflow
Engine

 ■ Business rules implementations that execute inside the Business Rules
Engine

 ■ BPEL process implementations that execute inside the BPEL Engine

 ■ Mediator implementations that execute inside the Mediator Engine

Other components such as Business-to-Business (B2B) engine, Complex Event
Processing (CEP), Business Activity Monitoring (BAM), and others are not discussed
in this book as we look to home in on the key usages of Oracle SOA in Fusion
Applications, while Business Process Management (BPM) is covered in Chapter 9.

In addition to the default set of core components, Oracle SOA 11g features the
Event Delivery Network (EDN) component, which provides Fusion Applications
with a mechanism to publish system and business events to which other composite
applications can then subscribe; the raised events can trigger execution of composite
applications when something of interest such as purchase order creation or new
employee hire occurs in the system. We cover this topic in detail in Chapter 15
along with a worked example on how to use EDN to integrate to and from Fusion
Applications. But before we start exploring the customization and extension methods,
let us have a look at some of the most common scenarios and interaction patterns
that involve SOA components and service engines in Fusion Applications.

Typical Interaction Patterns with
SOA Composites in Fusion Applications
Oracle SOA tools and methodologies are used extensively in Fusion Applications. We
have already mentioned the event processing use case, but there are many others like
the use of the Human Workflow component typically in approvals and other
notification-driven tasks, the use of the Mediator component to enable edge integration
with third-party systems, the use of BPEL as an asynchronous programming technique

10-ch10.indd 310 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 311

in long-running BPEL batch jobs, the use of BPEL in process flows, the use of the
Business Rules component in Approval Management Extensions (AMX), and so forth.

Figure 10-1 shows an example of an interaction scenario involving an SOA
composite.

In this example an end user interacts with an application’s user interface (ADF
UI) and at some point, for example, when a button to confirm some action is
clicked, a business event is raised from Oracle ADFbc (ADF Business Component),
which in turn is consumed by the Mediator component in the SOA composite that is
subscribed to that event.

Every event has a unique name and associated data structure that describes the
event. Developers and application designers can use different techniques including
Java and PL/SQL APIs to raise a business event when something interesting happens
in their application and they want other applications to be able to subscribe to
them. This approach was also exploited in Oracle E-Business Suite, but in Fusion
Applications you’ll quite often see that the entity object (EO) in an underlying ADFbc
component is configured to publish business events, and this happens at run time
when an EO data row instance is created, updated, or deleted.

Figure 10-1 also shows the interaction between BPEL process and external or
internal services such as Enterprise Scheduler Service (ESS) and ADFbc services. Of
course, this is just an example use case, and both BPEL and Mediator components
can interact with a wide variety of other services such as Web services that
implement a Service Data Object (SDO) interface, services based on Oracle SOA
adapters like file, database, Java Messaging Service (JMS) adapters, and so on.

FIGURE 10-1. An example of event-driven integration between SOA and ADF
applications

Browser

ADF UI

ADFbc

BPEL Process

Mediator

ADFbc
Service

ESS Service

ADF
Application

SOA
Composite

Internal &
External
Services

Business
Rules

Human
Work�ow

SOAP

SOAP
Event

Other
Services

SOAP

10-ch10.indd 311 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

312 Oracle Fusion Applications Development and Extensibility Handbook

NOTE
The Service Data Object (SDO) specification for
programming data architecture was originally
developed by IBM and BEA (see more details at
http://www.jcp.org/en/jsr/detail?id=235). Its main
aims are to unify and simplify programming across
different data sources. In Fusion Applications, SDOs
are usually implemented with ADFbc components,
which implement SDO specification interfaces.
They are easily created in JDeveloper using ADFbc
wizards and deployed as an ADFbc service interface
archive to WebLogic Server.

Some of the other interaction patterns that are not shown in Figure 10-1 are
invocation of SOA (BPEL) synchronous composites via JAX-WS client applications,
BPEL orchestration of remote ADFbc services, using BPEL entity variables to update
data in a Fusion Applications database, invoking a BPEL process from Enterprise
Scheduler (ESS) Java jobs, interaction with Oracle Data Integrator (ODI), and many
others.

Instead of just providing a seemingly endless list of SOA components’ usages in
Fusion Applications, let us take a deeper look into a typical SOA composite
application that provides a key application functionality, examine its components,
and describe its main interaction patterns.

An Example: Introducing
General Ledger Journal Approvals
We have chosen the General Ledger (GL) Journal Approval process to demonstrate
the use of SOA components simply because most people can associate it with the
underlying business process and one of its main requirements, to be able to route
approval notifications through a desired approval hierarchy. From a functional
perspective, the implementation guide for Fusion Applications Financials only
describes how to manage journal approval rules, but from the technical perspective
we are interested what is happening under the hood of this process at both run time
and design time.

Accessing and Exporting an SOA Composite
The SOA composite that drives the GL Journal Approval process is called
FinGlJrnlEntriesApprovalComposite and it can be accessed by logging in to Enterprise
Manager (EM) Fusion Applications Control for Financials Domain. Remember we
mentioned in Chapter 1 that each WebLogic domain in Fusion Applications contains

10-ch10.indd 312 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 313

its own SOA server cluster; therefore, all SOA composites that relate to the Financials
product offering are deployed inside the Financials WebLogic domain.

Developers, system integrators, and business analysts alike can use export
functionality to download the composite of interest on their desktops as shown in
Figure 10-2 and open it in JDeveloper. For readers with E-Business Suite background,
this would be an equivalent of opening an Oracle Workflow item type in the Oracle
Workflow Builder desktop tool for analysis, extension, and customization.

FIGURE 10-2. Accessing the SOA Export Composite page from Enterprise Manager
console

1. Highlight
FinGlJrnlEntriesApprovalComposite.

2. Expand the SOA Composite menu
and click the Export option to open
the Export Composite page.

10-ch10.indd 313 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

314 Oracle Fusion Applications Development and Extensibility Handbook

NOTE
Oracle supports both BPEL and BPMN notations for
describing and executing business processes. While
BPEL is a part of the Oracle SOA Suite and BPMN
is supported by Oracle BPM Suite, they seamlessly
complement each other by sharing the same
development tool (JDeveloper), Service Component
Architecture (SCA) model, deployment techniques
(SCA ant scripts), and management and monitoring
infrastructure (Enterprise Manager console). In the
current release of Fusion Applications 11.1.6, we
find the use of BPEL to be the dominant approach to
drive business processes, although we anticipate that
in the future releases it is expected that processes
based on BPMN will become more widespread in
applications that require workflow and business
processes orchestration.

The Export Composite page shown in Figure 10-3 provides different options for
exporting a snapshot of a running composite. We select Option 1: Export with All
Post-Deploy Changes and click the Export button to download the composite.

The composite can be opened with SOA Editor in JDeveloper; however, if we
want to extend the composite using JDeveloper, we need to follow a few steps,
which will be described later in this chapter, before we start applying design-time
extensions.

Examining a GL Journal Entries Approval Composite
The SOA composite FinGlJrnlEntriesApprovalComposite is shown in Figure 10-4.
Notice that in this quick walkthrough we deliberately ignore the error-handling branch
of the composite, which is removed from the figure. When a user posts a journal
batch using the Create Journal page from General Accounting Dashboard in Fusion
Applications Financials, or some other part of the application that triggers a Journal
Approval business event like the Journal Import process, the Mediator component
JournalApproval launches the BPEL process JournalApprovalDriverProcess, which will
in turn decide whether to invoke the approval BPEL process (JournalApprovalProcess)
or post the journal batches directly (JournalDirectPostingProcess) without the approval
depending on the decision criteria. The actual posting occurs when EssWebService
is invoked from the composite and the FinGlJournalApproval human task handles

10-ch10.indd 314 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 315

FIGURE 10-3. Exporting an SOA composite

1. Select Option 1: Export with All
Post-Deploy Changes radio button.

2. Click the Export button to
download the composite.

interaction with end users when approval is required. Whether the journal batches
require approval or not is determined by the application setup and can be
observed by checking the value of the ENABLE_JE_APPROVAL_FLAG and
JOURNAL_APPROVAL_FLAG columns in the GL_LEDGERS and GL_SOURCES_B
tables respectively in the Fusion Applications database.

10-ch10.indd 315 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

316 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 10-4. GL Journal Entries Approval SOA composite

1. JournalApproval
Mediator component

2. JournalApprovalDriverProcess
BPEL component

3. JournalDirectPostingProcess
BPEL component

4. JournalApprovalProcess
BPEL component

5. FinGlJournalApproval
Human Task component

6. FinGlJournalApprovalRules
Business Rules component

7. SOA Composite
Service references

The main part of the process consists of the Mediator, BPEL, Business Rules and
Human Task components listed in Table 10-1.

Figure 10-5 shows the run-time flow trace in Enterprise Manager for an instance
of FinGlJrnlEntriesApprovalComposite that went through the batch approval process.

10-ch10.indd 316 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 317

Component Name Type Purpose

JournalApproval Mediator Subscribes to the JournalApproval event
and initiates the process; enables
event processing; and provides loose
coupling by subscribing to the business
events that can be raised from various
sources such as ADF UI, PL/SQL, Java,
and so on.

JournalApprovalDriverProcess BPEL Driver process flow, which accepts
journalApprovalRequestMessage
as input that contains references to
journal batches through the batchId,
batchName, action, and ledgerId
attributes. Essentially, the process makes
a check if an action attribute is equal
to ONLY_POSTING, in which case a
particular journal batch is processed
and posted without the approval.

JournalApprovalProcess BPEL Similar to the driver BPEL
process, this process also accepts
journalApprovalRequestMessage.
The process counts the number
of journal batches in the input
message and spawns that many
parallel flows, which in turn execute
JournalBatchApprovalProcess where
all the action that requires approval
happens. The process updates Journal
Batch status code and a GL Journal
Approval human task is invoked.
Depending on the outcome of the
approval, for example, approved
or rejected, the journal batch status
is again updated by invoking the
JournalApprovalBCService ADFbc
service. This same helper service is
invoked to generate a Posting Run Id
value just before the batch is posted by
invoking the EssWebService service.

TABLE 10-1. Main Components in FinGlJrnlEntriesApprovalComposite (Continued)

10-ch10.indd 317 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

318 Oracle Fusion Applications Development and Extensibility Handbook

Component Name Type Purpose

JournalDirectPostingProcess BPEL This process is quite similar to
JournalApprovalProcess, but in this case
the GL Journal Approval human task
is not invoked on this occasion and
batches are posted without going to the
approval human task.

FinGlJournalApproval Human
Task

This component provides Human
Workflow approval capability to the
composite. The main source of data
for this task is obtained by invoking
JournalApprovalBCServiceForHWF
service operation getJournalBatch,
which provides the details about
the journal batches such as Journal
Header, Ledger, MaxJournalAmount,
JournalSource, and so on. The task
also defines a rules-based assignment
of approval process participants
and approval task outcome such as
APPROVE or REJECT.

FinGlJournalApprovalRules Business
Rule

This component allows evaluation of
dynamic decisions during the process
execution such as creating a supervisory
list of journal batch approvers at run
time, for example, which is used by the
FinGlJournalApproval human task to
derive the list of approval participants
on the fly. Rules are implemented as IF-
THEN structures grouped into rule sets
and provide human task assignments
based on policies such as Supervisory
Hierarchy, Job Level Hierarchy, Position
Hierarchy, or even a custom Approval
Group defined by a system integrator
in charge of designing an approval
hierarchy.

TABLE 10-1. Main Components in FinGlJrnlEntriesApprovalComposite

10-ch10.indd 318 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 319

FIGURE 10-5. FinGlJrnlEntriesApprovalComposite instance flow trace

The flow of SOA components execution in the trace hierarchy for this instance of
the process run shows JournalApproval event as initiator of the process at the very
top; JournalApprovalDriverProcess invoking JournalApprovalProcess; a number of
invocations to Web services to update the batch approval status, for example
(JournalApprovalBCService), and to derive additional Financials data required for
the business process (FinCommonPublicService); and Enterprise Scheduler Service

10-ch10.indd 319 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

320 Oracle Fusion Applications Development and Extensibility Handbook

EssWebService to post the journal batches. Human task FinGlJournalApproval is aided
by the data provided as a result of invoking the JournalApprovalBCServiceForHWF
Web service.

With this brief walkthrough, we conclude the overview of the typical SOA composite
and in sections that follow, we aim to use this same FinGlJrnlEntriesApprovalComposite
to provide instructions on how to extend and customize the most common features of
SOA composites in Fusion Applications.

Run-time SOA Component Customizations
When implementing Fusion Application products, there are a number of SOA
components that can be customized using different browser-based customization
tools at run time. By referring to run-time customizations, we mean applying
changes to a deployed application on a WebLogic server that belongs to a Fusion
Applications installation. Table 10-2 provides a summary of browser-based tools
used in Fusion Applications.

Tool Used to Customize Access URL

Oracle BPM
Worklist

Business rules in processes that require
approvals configuration and assignment rules
to be customized.

http://host:port/
integration/
worklistapp

Oracle SOA
Composer

Non-approval-related business rules and
SOA application domain value maps
(lookup values). Although it is possible to
customize approvals configuration in SOA
Composer, this is not recommended because
customizations are not preserved after
applying patches. Recommendation is to use
Oracle BPM Worklist application for approvals
configuration and customizations.

http://host:port/soa/
composer

Enterprise
Manager
(Fusion
Applications
Control)

Web service endpoint properties in SOA
composite applications, Web Services
Manager (WSM) security policies, and Web
Services binding properties.

http://host:port/em

TABLE 10-2. Tools for SOA Component Customizations at Run Time

10-ch10.indd 320 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 321

We’ll now take a closer look at configuration of custom approval assignment
rules, which is an activity commonly performed by system integrators and
implementation consultants when implementing Fusion Applications products,
but also business analysts after a project goes live and changes are required to meet
new business needs.

Approvals Management, Configuration,
and Assignment Rules in Fusion Applications
The approval management in Fusion Applications is no different than the approval
management in Oracle SOA Suite, which is a part of its Human Workflow
services—a component responsible for human interactions within a business
process. Sometimes in the Fusion Applications and Oracle SOA Suite documentation,
the approval management features within Oracle SOA Human Workflow services
are referred to as Approval Management Extensions or AMX for short.

The main purpose of AMX is to enable routing of human tasks primarily for the
purposes of approvals in business processes such as GL Journal Approval, described
in the previous section. AMX supports different levels of approval complexity from
a simple static list of approvers to various types of multistage patterns of approval
hierarchies that include supervisory, position-based, dynamic approval groups and
so on. AMX is the successor to the E-Business Suite Approvals Management (AME)
and PeopleSoft Approval Workflow (AWE) engines, and it has functionality similar
to that of R12 AME and PeopleTools AWE.

Fusion Applications developers use the Human Task editor in JDeveloper at
design time to define a human task input data, task outcomes such as ACCEPTED or
REJECTED, escalation rules, and notification delivery mechanism like an e-mail or
even instant messenger. They also define task routing (approval) stages used in the
approval process along with approval list builders, which are used to assign tasks at
run time. Following are typical approval list builders found in Fusion Applications as
described in Fusion Middleware Modeling and Implementation Guide for Oracle BPM:

 ■ Approval Groups Includes predefined approver groups in the approver list.
Approval groups can be static or dynamic.

 ■ Job Level Ascends the supervisory hierarchy, starting at a given approver
and continuing until an approver with a sufficient job level is found.

 ■ Position Ascends the position hierarchy, starting at a given approver’s
position and continuing until a position with a sufficient job level is found.

 ■ Supervisory Ascends the primary supervisory hierarchy, starting at the
requester or at a given approver, and generates a chain that has a fixed
number of approvers in it.

10-ch10.indd 321 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

322 Oracle Fusion Applications Development and Extensibility Handbook

Figure 10-6 shows FinGlJournalApproval task and its Assignments tab when opened
in JDeveloper. We can see that this task has just one stage defined as a combination of
a number of sequential and parallel task participants.

TIP
Supervisory- and position-level hierarchies are
defined through Human Capital Management
(HCM) configuration. If the hierarchy for a user
who is expected to participate in the approval
process is not set up correctly or hierarchy list
builders used in rules are not providing the expected
results, Fusion Applications system administrators
can manually invoke HierarchyProviderService,
which is a part of the HcmCore application
to troubleshoot the issues. The WSDL files are
deployed to HCM Domain at http://host:port/
hcmEmploymentCoreApprovalHierarchy/
HierarchyProviderService?wsdl for supervisory
hierarchy and http://host:port/hcmTreesModel/
HierarchyProviderService?wsdl for position
hierarchy.

FIGURE 10-6. FinGlJournalApproval task assignment definition in JDeveloper

10-ch10.indd 322 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 323

The creation of approval rules is one of the key activities during the product
implementation phase, and in the next sections, we will provide simple but practical
examples on how to customize business rules for approval assignments. It must also be
noted that the readers who didn’t have previous exposure to the approval management
techniques in Oracle SOA Suite 11g would probably find this topic a little abstract;
therefore, the best thing to do is to walk through a couple of examples.

Example 1: Creating and Using a Static
Approval Group in the GL Journal Approval Process
As previously mentioned, AMX comes with a number of list builders to manage
approval lists in Fusion Applications. Currently, the GL Journal Approval process
comes with just one out-of-the-box predefined approval rule, and that is
ManagerApprovalRule based on Supervisory list builder, which is defined as
Supervisory_JournalApprovalRuleSet within the FinGlJournalApprovalRules.rules
Business Rules component in FinGlJrnlEntriesApprovalComposite at design time. The
Supervisory list builder uses Human Resources (HR) hierarchies set up in the Human
Capital Management (HCM) module. For example, if a user enters and posts a journal,
it will go to his manager for an approval, and this can continue for a number of
levels. The number of approval levels, starting and top participant can be configured
through the Task Configuration page in the BPM Worklist tool.

In our example we will use the Approval Group list builder, which is usually
used for approvals and decision making outside of the managerial chain. Also,
if you are working with a brand new installation of Fusion Applications, the
chances are that HR hierarchies are not set up yet, but you may still need to be
able to demonstrate the approval process, and by configuring and customizing
JournalApprovaGroupRule, you may be able to achieve just that. Let’s walk through
a step-by-step example of setting up a simple static approval group.

Step 1: Ensure That Ledger Is Enabled for Approvals Functional or implementation
consultants usually define journal approval for a ledger. The options that enable journal
approval at the ledger level and by journal source are configured by accessing the
following tasks through Functional Setup Manager (FSM) in Fusion Applications:

 ■ To enable journal approval for a ledger: In FSM, search for and open the
Specify Ledger Options task and check the Enable Journal Approval check
box for the ledger.

 ■ To enable journal sources for journal approval: In FSM, search for and open
the Manage Journal Sources task and check the Require Journal Approval
check box for the source to enable journal approval.

10-ch10.indd 323 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

324 Oracle Fusion Applications Development and Extensibility Handbook

You can also validate this by querying the ENABLE_JE_APPROVAL_FLAG and
JOURNAL_APPROVAL_FLAG columns in the GL_LEDGERS and GL_JE_
SOURCES_B Fusion Applications database tables respectively.

Step 2: Access BPM Worklist Running on Financials WebLogic Domain to Disable
Default Rule Set Oracle BPM provides the BPM Worklist application, which
allows system administrators, implementation consultants, business analysts, and
others to administer, configure, and customize approval and nonapproval business
rules. A user needs to be assigned an appropriate role such as Financial Application
Administrator (FUN_FINANCIAL_APPLICATION_ADMINISTRATOR) to be able
to access the BPM Worklist application. The task customization is performed
from the Task Configuration tab, which can be accessed by logging on to http(s)://
:<FinancialsDomain_Host>/:<FinancialsDomain_Port>/integration/worklistapp and
navigating to it by clicking the Administration link and Task Configuration tab. In
the Task Configuration tab we select the FinGlJournalApproval task and click the
Rules subtab, which opens a page with the heading Data Driven Configuration as
shown in Figure 10-7.

FIGURE 10-7. Customizing a task in BPM Worklist application

10-ch10.indd 324 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 325

As mentioned earlier in this chapter, Supervisiory_JournalApprovalRuleSet is
configured out of the box, and if your Fusion Applications instance HR Supervisory
Hierarchy is not configured, an attempt to run an approvals task will result in error.
Therefore, we are going to disable it by checking the Ignore This Participant check
box for Supervisiory_JournalApprovalRuleSet.

TIP
 If you find that the default rule
ManagerApprovalRule as part of the Supervisory
rule set is still “firing” when Journal Batch needs
to be approved even if the Ignore This Participant
check box is checked, set the condition in the IF
section of the rule that always evaluates to
‘false’; for example, JournalBatchLedger
.enableJeApprovalFlag is "DUMMY" to work
around the issue, before addressing it through Oracle
Support if need be.

Step 3: Create a Static Approval Group Approval groups are created by accessing
the Approval Groups tab in the BPM Worklist application as shown in Figure 10-8
and saving it to the database by clicking the Apply button.

Okay, our static approval group that we called XxGlStatic_ApprovalGroup is
very simple and it consists of only one member user called xx_gl_approver. This is
hardly a requirement you will find in real-life implementation, but we are merely
demonstrating the principles here.

Step 4: Assigning a Custom Approval Group to Approval Group List Builder Now
when we have saved our custom static approval group into the database, we can
use it in Approval Group List Builder within ApprovalGroup_JournalApprovalRuleSet
as demonstrated in Figure 10-9.

Notice that we have also set a business rule test inside JournalApprovaGroupRule
to evaluate at run time if JournalBatchLedger.enableJeApprovalFlag is set to a value
of “Y” (you need to surround the letter Y with the double quotes as shown in
Figure 10-9). In addition to that, the Ignore This Participant check box is unchecked
to enable our rule, and also we need to commit the changes by clicking the Commit
Task button, which is situated to the right of the Save button, after which the following
pop-up message will be displayed:

“The Rules defined for the list builders of this task are committed successfully”

10-ch10.indd 325 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

326 Oracle Fusion Applications Development and Extensibility Handbook

Now we can proceed to test whether the changes we introduced have produced the
desired effect; for example, we are expecting the xx_gl_approver user to be assigned
an approval task after successfully submitting a journal batch for approval.

FIGURE 10-8. Creating a static approval group

1) Click on the Create Static Approval Group
called XxGlStatic_ApprovalGroup.

2) Click the plus (+) icon to add approval group
members, which can be users such as xx_gl_
approver in our exercise or other approval groups.

10-ch10.indd 326 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 327

Step 5: Submitting a Journal Batch for Approval and Verifying the Approval Rules
Changes In this step we log in to Fusion Applications as a user who has access to
the Create Journal screen from, say, the General Accounting Dashboard. In our
case that is the XX_FA_IMPLEMENTOR user and we enter the journal batch as
demonstrated in Figure 10-10.

FIGURE 10-9. Customizing ApprovalGroup_JournalApprovalRuleSet

2) Assign XxGlStatic_ApprovalGroup
created in the previous step.

3) Click the Save icon to save
the changes while editing.

1) Click the Edit Task icon to enter the editing mode.

10-ch10.indd 327 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

328 Oracle Fusion Applications Development and Extensibility Handbook

Before posting the journal batch named Test 005 in Figure 10-10, we first need
to complete it by clicking the Complete button and then post the journal by clicking
the Post button, which results in the following pop-up message being displayed:

“The journal requires approval before it can be posted, and has been forwarded
to the approver.”

FIGURE 10-10. Creating a sample journal for approval

10-ch10.indd 328 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 329

FIGURE 10-11. Approver as defined in custom approval group is assigned approval task.

If we now log in as the XX_GL_APPROVER user, we should see in the home page
application a notification informing us about the pending task that needs to be
actioned, as illustrated in Figure 10-11. Clicking the Journal Batch TEST 005 for the
XX_FA_IMPLEMENTOR link in the Worklist region will open a task page, which will
allow us to review the journal batch details before approving or rejecting it (shown
in Figure 10-12).

10-ch10.indd 329 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

330 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 10-12. Journal Batch approval task in BPM Worklist application

In real-life implementations, we would probably be asked to build custom rules
for every combination of ledger entered amount, approval level, and other attributes
that can be derived from journals data, like how to test for the Maximum Journal
Line Amount by adding it to the existing rule set as illustrated in Figure 10-13.

10-ch10.indd 330 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 331

Design-time Customizations
The design-time customizations and extensions are performed by developers in
the JDeveloper tool. At design time, developers have far more options for what to
customize or extend; for example, while BPEL and Mediator components can’t be
customized and extended with run-time tools, it is possible to do so with JDeveloper
at design time.

FIGURE 10-13. Adding rule tests and conditions

10-ch10.indd 331 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

332 Oracle Fusion Applications Development and Extensibility Handbook

NOTE
To perform design-time customizations of SOA
components and composites, JDeveloper needs to
be set up and configured for customization work as
described in Chapter 7.

The current Fusion Applications Extensibility Guide lists the following as tasks
that are allowed to be performed by developers in JDeveloper:

 ■ Customization or extension of business rules

 ■ Customization or extension of BPEL processes

 ■ Customization or extension of human tasks

 ■ Customization or extension of Oracle Mediator

 ■ Customization of SOA composite application components such as a binding
component and wire

 ■ Customization or extension of transformations

 ■ Extension of Web Services Description Language (WSDL) or Extensible
Markup Language (XML) schema definition (XSD) files

 ■ Extension of Java EE Connector Architecture (JCA) adapters

So, you must be wondering what is the difference between customization and
extension of SOA components? The Extensibility Guide for Fusion Applications
implies that customization means editing or changing the existing SOA artifact,
while extending means creating or adding a new artifact into the existing SOA
composite. We are not going to get into the semantics of this; instead, we’ll take
a look at an example in which we’ll set up JDeveloper to work with SOA
customizations at design time and provide some examples.

Setting Up JDeveloper to
Customize and Extend SOA Composites
Prior to starting work on customization or extension of SOA composites, it is important
to understand that JDeveloper with Fusion Applications extensions must be set up as
explained in Chapter 7. We’ll work on FinGlJrnlEntriesApprovalComposite as it was
the case so far in this chapter, and what follows is the list of steps we need to perform
in order to get ready for SOA composite customizations in JDeveloper.

10-ch10.indd 332 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 333

Step 1: Export the FinGlJrnlEntriesApprovalComposite
We have already covered this step in the section “Accessing and Exporting an
SOA Composite” (see the earlier Figure 10-3). Just as a reminder, we need to log
in to the Enterprise Manager Fusion Application Control console in the relevant
WebLogic Server domain, which in our example is the Financials domain. Here
we can expand the SOA folder under Farm_FinancialsDomain and select
FinGlJrnlEntriesApprovalComposite for export by right-clicking on it. We select
Option 1: Export with All Post-deploy Changes as shown in Figure 10-3 and we
also make sure to select the Export With Default Archive Name option under the
SAR File heading.

Once we have the exported archive file on our desktop, we are ready to open it
in JDeveloper and proceed with the next step. The version of this composite on our
installation is sca_FinGlJrnlEntriesApprovalComposite_rev11.1.6.0.0.jar.

Step 2: Import the Composite into JDeveloper for Customization
Open JDeveloper configured for Fusion Applications customizations and select the
Oracle Fusion Applications Developer role.

NOTE
You’ll usually get prompted during the startup to
select the role in JDeveloper, but if that is not the
case, you can go to Preferences | Roles to select
the appropriate role when working in JDeveloper.
JDeveloper will ask you to restart it after you select
the new role from the Preferences window.

Create a generic application called XXFIN_FinGlApprovalComposite, for example.
We don’t need any projects configured in this application, as we’ll create it from
the SOA composite archive as shown in Figure 10-14.

10-ch10.indd 333 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

334 Oracle Fusion Applications Development and Extensibility Handbook

In JDeveloper go to File | Import, and in the Import pop-up window,
select SOA Archive Into SOA Project and click the OK button. This action will
launch the Import SOA Composite wizard, which allows us to create the
FinGlJrnlEntriesApprovalComposite project. Click the Next button to progress
to the second step in the wizard where we browse for the exported sca_
finGlJrnlEntriesApprovalComposite_rev11.1.6.0.0.jar file from the Enterprise
Manager console in the earlier step and give FinGlJrnlEntriesApprovalComposite
as the composite name. We must be sure to check the Import For Customization
box as illustrated in the figure.

JDeveloper should open the composite in the editor, but we need to switch the
role from Oracle Fusion Applications Developer to Oracle Fusion Applications

FIGURE 10-14. Importing the composite into JDeveloper for customization

1) Click the File menu
option and select Import.

2) Select SOA Archive Into SOA
Project and click the OK button.

3) When the Import SOA Composite wizard opens,
give FinGlJrnlEntriesApprovalComposite as the
Project Name, and this should match the name of the
composite we are customizing. Click the Next button.

4) Use the Browse button to find the exported SOA
composite sca_finGlJrnlEntriesApprovalComposite_
rev11.1.6.0.0.jar. Make sure that Composite Name is
set to FinGlJrnlEntriesApprovalComposite and that
Import For Customization is checked.

10-ch10.indd 334 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 335

Administrator Customization by going to Tools | Preferences | Roles from the
JDeveloper menu or restarting JDeveloper and selecting Oracle Fusion Applications
Administrator Customization on startup.

Step 3: Configure adf-config.xml
Before we configure adf-config.xml, we’ll add the Applications Core library to the
project as shown in Figure 10-15.

Now we proceed with configuring adf-config.xml to include the MDS Connection
details and enable customizations. Normally, the adf-config.xml can be configured

FIGURE 10-15. Adding the Applications Core library to the
FinGlJrnlEntriesApprovalComposite project

2) Click the Add
Library button.

1) Right-click the project to
access Project Properties, and
select Libraries and Classpath.

3) Select Applications
Core and click the
OK button.

10-ch10.indd 335 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

336 Oracle Fusion Applications Development and Extensibility Handbook

through the user-friendly interface in JDeveloper, but to add MDS connection
details, we need to perform this task by modifying the XML source directly. Access
adf-config.xml through Application Navigator | Application resources | Descriptors
(see Figure 10-16).

The /apps path needs to be added to the MDS configuration section by adding
the following line in adf-config.xml:

<namespace path="/apps" metadata-store-usage="mstore-usage_2"/>

Inside the <metadata-store-usages> tag, we need to add the following:

</metadata-store-usage>
 <metadata-store-usage id="mstore-usage_2">
 <metadata-store class-name="oracle.mds.persistence.stores
.db.DBMetadataStore">
 <property value=<MDS_SCHEMA> name="jdbc-userid"/>
 <property value="<MDS_SCHEMA_PASSWORD> name="jdbc-password"/>
 <property value="jdbc:oracle:thin:@<host_name>:<port>:<SID>
name="jdbc-url"/>
 <property value="soa-infra" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>

FIGURE 10-16. Configuring adf-config.xml in JDeveloper

10-ch10.indd 336 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 337

where <MDS_SCHEMA> is the name of the Oracle database schema, for example,
FIN_FUSION_MDS_SOA; <MDS_SCHEMA_PASSWORD> is the password for that
schema; and <host_name>:<port>:<SID> are the details related to the JDBC
connect string for the database where the MDS schema is installed.

Here is an example for your reference of our adf-config.xml file in the following
listing:

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:config="http://xmlns.oracle.com/bc4j/configuration"
 xmlns:adf="http://xmlns.oracle.com/adf/config/properties"
 xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <defaults useBindVarsForViewCriteriaLiterals="true"
 useBindValuesInFindByKey=”true”/>
 <startup>
 <amconfig-overrides>
 <config:Database jbo.locking.mode="optimistic"/>
 </amconfig-overrides>
 </startup>
 </adf-adfm-config>
 <adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID" value="XXFIN_FinGlApprovalComposite-5647"/>
 </adf:adf-properties-child>
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <CredentialStoreContext credentialStoreClass="oracle.adf.share.security.providers
.jps.CSFCredentialStore"
 credentialStoreLocation="../../src/META-INF/jps-config
.xml"/>
 </sec:adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/soa/shared"/>
 <namespace path="/apps" metadata-store-usage="mstore-usage_2"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store class-name=”oracle.mds.persistence.stores.file
.FileMetadataStore">
 <property value="${oracle.home}/integration"
 name="metadata-path"/>
 <property value="seed" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>

 <metadata-store-usage id="mstore-usage_2">
 <metadata-store class-name="oracle.mds.persistence.stores
.db.DBMetadataStore">

10-ch10.indd 337 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

338 Oracle Fusion Applications Development and Extensibility Handbook

 <property value="FIN_FUSION_MDS_SOA" name="jdbc-userid"/>
 <property value="Param123" name="jdbc-password"/>
 <property value="jdbc:oracle:thin:@192.168.1.151:1521:fusiondb"
name="jdbc-url"/>
 <property value="soa-infra" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Now when we are connected to MDS, we need to add a customization class to
the MDS configuration. To do that, in the Overview tab we click the plus (+) icon to
add or edit customization classes. We search for GlobalCC and add the oracle.apps
.fnd.applcore.customization.GlobalCC class as shown in Figure 10-17.

FIGURE 10-17. Adding GlobalCC customization class to MDS configuration

Click the + icon to search for and add GlobalCC Java class.

10-ch10.indd 338 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 339

NOTE
Oracle Fusion Middleware applications such as
ADF and SOA use the Meta Data Services (MDS)
framework to create customizable applications. This
allows customers to make changes and modifications
that suit their particular business or other needs on
different levels (global, site, industry and so on).
Fusion Applications provide customization classes
and layers to support the customizations of metadata
content. To customize SOA composites, developers
that perform customizations must specify the
customization layer and its value, which allows them
to be recognized by JDeveloper. Customization
features are only enabled when working in the
Oracle Fusion Applications Customizations
Administrator JDeveloper role. A customized SOA
application contains base SOA composite as well as
customized metadata content, which is fetched at
run time so that customizations can be applied.

After restarting JDeveloper in the Oracle Fusion Applications Administrator
Customization role, we are ready to start customizing when we select the
customization context by going to the View menu option in JDeveloper, clicking
on Customization Context, and selecting Customization Context, which is Global
in our case (Figure 10-18).

An Example of Extending and
Customizing SOA Components
Fusion Applications provides a summary of what SOA components render themselves
for customization or extensions. For example, we should be able to add (extend)
JCA File Adapter to the existing (base) SOA composite and wire it to a Mediator
component, which is part of the base composite. Creating this wire between the file
adapter and Mediator component will automatically add a static routing rule in the
existing mediator (customization) as demonstrated in Figure 10-19.

10-ch10.indd 339 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

340 Oracle Fusion Applications Development and Extensibility Handbook

If we hover above the little star icon inside the added static routing rule, it will
inform us that it is created by the current customization context. For the full list of
components that are either customizable, extensible, or both, it is best to consult
Oracle’s Extensibility Guide for Fusion Applications as this is an official product
documentation and any customizations outside the scope of this document are not
supported.

FIGURE 10-18. Selecting a customization context in JDeveloper

Selecting the Global customization context.

10-ch10.indd 340 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 341

In this example we have added XxDemoFileWriter to the
FinGlJrnlEntriesApprovalComposite and configured it to write the data passed to it
into the /tmp directory on the server where SOA Server is running. Figure 10-20
shows the wiring between the mediator JournalApproval that receives business
events when journals are posted to the general ledger.

FIGURE 10-19. Customizing a Mediator component

10-ch10.indd 341 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

342 Oracle Fusion Applications Development and Extensibility Handbook

How Customizations Are Recorded in MDS
MDS records customizations as delta files. For example, when we added
the XxDemoFileWriter and wired it to the JournalApproval mediator, the
following files are created under the XXFIN_FinGlApprovalComposite\
FinGlJrnlEntriesApprovalComposite\mdssys\cust\Global\GLOBAL project
directory by JDeveloper:

 ■ composite.xml.xml

 ■ JournalApproval.componentType.xml

 ■ JournalApproval.mplan.xml

Notice that we are performing the changes in the global customization context,
but it could be site, industry, or others. These delta files document the changes
introduced by performing the customization of the base composite, and here is their
content:

composite.xml.xml
<mds:customization version="11.1.1.63.91"
 xmlns:mds="http://xmlns.oracle.com/mds">
 <mds:insert after="id_85" parent="id_1">
 <reference name="XxDemoFileWriter" ui:wsdlLocation="XxDemoFileWriter
.wsdl"

FIGURE 10-20. Base SOA composite extended with file adapter XxDemoFileWriter

10-ch10.indd 342 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 343

 xml:id="Global_186" xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
 <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/
file/XXFIN_FinGlApprovalComposite/FinGlJrnlEntriesApprovalComposite/
XxDemoFileWriter#wsdl.interface(Write_ptt)"
 xml:id="Global_187"/>
 <binding.jca config=”XxDemoFileWriter_file.jca" xml:id="Global_188"/>
 </reference>
 </mds:insert>
 <mds:insert after="id_29" parent="id_1">
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/file/XXFIN_
FinGlApprovalComposite/FinGlJrnlEntriesApprovalComposite/XxDemoFileWriter"
 location="XxDemoFileWriter.wsdl" importType="wsdl"
 xml:id="Global_185" xmlns="http://xmlns.oracle.com/sca/1.0"/>
 </mds:insert>
 <mds:insert parent="id_1" position="last">
 <wire xml:id="Global_189" xmlns="http://xmlns.oracle.com/sca/1.0">
 <source.uri xml:id="Global_190">JournalApproval/XxDemoFileWriter</
source.uri>
 <target.uri xml:id="Global_191">XxDemoFileWriter</target.uri>
 </wire>
 </mds:insert>
</mds:customization>

JournalApproval.componentType.xml
<mds:customization version="11.1.1.63.91"
 xmlns:mds="http://xmlns.oracle.com/mds">
 <mds:insert parent="id_1" position="last">
 <reference name="XxDemoFileWriter" ui:wsdlLocation="XxDemoFileWriter.
wsdl"
 xml:id="Global_4" xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
 <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/
file/XXFIN_FinGlApprovalComposite/FinGlJrnlEntriesApprovalComposite/
XxDemoFileWriter#wsdl.interface(Write_ptt)"
 xml:id="Global_5"/>
 </reference>
 </mds:insert>
</mds:customization>

JournalApproval.mplan.xml
<mds:customization version="11.1.1.63.91"
 xmlns:mds="http://xmlns.oracle.com/mds">
 <mds:insert parent="id_3" position="last">
 <case executionType="direct" name="XxDemoFileWriter.Write"
 xml:id="Global_10" xmlns="http://xmlns.oracle.com/sca/1.0/
mediator">
 <action xml:id="Global_11">
 <invoke reference="XxDemoFileWriter" operation="Write"
 xml:id="Global_12"/>

10-ch10.indd 343 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

344 Oracle Fusion Applications Development and Extensibility Handbook

 </action>
 </case>
 </mds:insert>
</mds:customization>

Deploying a Customized and Extended SOA Composite
Before we can deploy our customized version of the SOA composite, we
need to create a SAR file locally in JDeveloper by right-clicking on the
FinGlJrnlEntriesApprovalComposite project and selecting the Deploy option. If
successful, the Deployment.log file in JDeveloper will show something like this:

[03:10:52 PM] ---- Deployment started. ----
[03:10:52 PM] Target platform is (Weblogic 10.3).
[03:10:52 PM] Running dependency analysis...
[03:10:52 PM] Building...
[03:11:38 PM] Deploying profile...
[03:11:38 PM] Updating revision id for the SOA Project
'FinGlJrnlEntriesApprovalComposite.jpr' to '11.1.6.0.0'..
[03:11:58 PM] Wrote Archive Module to C:\FA_JDev\Projects\mywork
\XXFIN_FinGlApprovalComposite\FinGlJrnlEntriesApprovalComposite\deploy\
sca_FinGlJrnlEntriesApprovalComposite_rev11.1.6.0.0.jar
[03:11:58 PM] Elapsed time for deployment: 1 minute, 7 seconds
[03:11:58 PM] ---- Deployment finished. ----

The compiled SOA archive file sca_FinGlJrnlEntriesApprovalComposite_
rev11.1.6.0.0.jar can now be deployed using Enterprise Manager in the Financials
WebLogic domain. Of course, when deploying composites from other product
pillars such as Human Capital Management (HCM), we need to use the corresponding
WebLogic server’s Enterprise Manager to deploy the composite.

If we are to put one journal through the Financials Dashboard, we should observe
that the newly deployed and customized version of FinGlJrnlEntriesApprovalComposite
is invoking the custom XxDemoFileWriter file adapter as shown in Figure 10-21.

Patching and Upgrade Considerations
Finally, we want to mention patching and upgrading. Oracle recommends using
OPatch because it preserves run-time customizations and merges a new patch
update into an SOA composite application that was customized in JDeveloper at
design time and run time using SOA Composer and BPM Worklist tools. OPatch is a
standard tool for upgrade and patching of various Oracle system components.

However, if customizations performed in JDeveloper at design time are not
supported by OPatch, patches will fail to apply to a running WebLogic server
instance. There are a number of steps that Oracle recommends to preserve SOA
composite JDeveloper customizations before applying the patch, and they are
documented in the Oracle Fusion Applications Patching Guide in the section
“Patching Oracle Fusion Applications Artifacts.”

10-ch10.indd 344 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 10: Run-time and Design-time Customizations of SOA Components 345

NOTE
We should stress that developers and implementors
must be fully familiar with all the recommendations
outlined in the section “Patching Service-Oriented
Architecture (SOA) Composites” of the Oracle
Fusion Applications Patching Guide in order to
minimize the impact on system configuration that
could potentially occur when customizing and
extending SOA artifacts.

Summary
In this chapter we have given an overview of the most typical interaction patterns
related to SOA composites in Fusion Applications. We had a brief walkthrough of
SOA tools and methodologies with emphasis on the most common ones such as
Approval Management Extensions (AMX). We then introduced the General Ledger
Journal Approvals process to demonstrate customization and extensibility techniques,
which in our view is a fairly straightforward business process that most of us can
relate to.

FIGURE 10-21. Run-time audit trail from customized Mediator component

10-ch10.indd 345 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

10-ch10.indd 346 11/12/13 12:17 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
11

Reports

11-ch11.indd 347 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

348 Oracle Fusion Applications Development and Extensibility Handbook

In Fusion Applications it is possible for implementers to write reports with
negligible programming effort. This reporting is possible on data that resides
either inside Fusion Applications Oracle Database or in an external source via a

Web service, or a variety of other methods.

When compared to Oracle E-Business Suite, the BI Publisher report creation
process is quite different in Fusion Applications. Oracle Business Intelligence
Enterprise Edition (OBIEE) comes integrated with Oracle Fusion Applications and it
provides various ways to generate reports. For developers with a background in Oracle
Reports Writer, the data model designer concept in Fusion Applications is very similar
to the data model for the Oracle Reports tool. Both Oracle Reports and Fusion
Applications allow you to create groups based on SQL statements and define
relationships between groups. However, in the case of Fusion Applications, the data
model builder can be accessed from the browser, which means that you do not need
the database connection credentials for developing reports because SQL queries can
be designed straight into the browser-based data model editor. Another key difference
is that the Oracle Reports data model editor can only connect to an Oracle database
for sourcing the data; however, the data model builder in Fusion Applications can
source the data from a variety of sources, as discussed later in this chapter.

In this chapter you will learn the architecture and the steps for developing BI
Publisher reports. This technique for developing BI Publisher reports can be applied
to both SaaS (Software as a Service) and On Premise implementations of Fusion
Applications.

BI Publisher Report Architecture
in Fusion Applications
Conceptually, the creation of BI Publisher reports is the same regardless of the platform
used, whether Fusion Applications or Oracle E-Business Suite, but the physical steps
are quite different. At the back end there needs to be a source that returns the data,
which is converted into valid XML; in the middle is a report template that contains
the design and presentation logic; and on the front end is the BI Publisher report
output in one of the supported formats. Figure 11-1 shows the architecture of the
data generation using BI Publisher Report in Fusion Applications.

The three main components of BI Publisher reporting in Fusion Applications are
data model, layout template, and report output as explained in the following sections.

11-ch11.indd 348 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 349

Data Model
A data model is where the data that is to be presented in the report output is designed.
You must be assigned a BI Administrator Application Role to access the data model
editor in Fusion Applications. A data model contains one or more data sets. Each data
set corresponds to a source of data such as SQL query, Excel, CSV, and so on. In other
words, a data set contains the logic to retrieve data from the data source. Given that a
data set can retrieve data from a variety of data sources, it is therefore possible for a
single report to contain data from a SQL query and also from a Web service. This data
returned from the source can either already be in XML format or be converted into
XML format by the Fusion Applications reporting engine. In Oracle Fusion Human
Capital Management, you can also generate data using product-specific functionality,
such as HCM Extract, which can then be presented in a BI Publisher report.

The data model also allows you to link the data by defining master-detail
relations between the data sets. This allows developers to build a hierarchical data
model. You can also perform calculations and create group level totals and subtotals
to aggregate the data using the data model editor. Figure 11-2 shows the data model
editor in Fusion Applications when it is accessed via URL similar to http://host:port/
analytics. Click the New menu, and then select a report type, following which you
get the option of using an existing data model or creating a new data model or the
option of uploading a data model from Excel.

FIGURE 11-1. Basic architecture of Fusion reporting and comparison with Oracle
E-Business Suite reports

A data model
containing one of more
data sets. Each data set
corresponds
to a data source.

SQL Query, Excel, HTTP
XML, XML File, CLOB, ADF
View Object, CSV, Endeca
Query, LDAP Query, Web
Service, MDX Query

Template containing
presentation design
and logic

RTF Template
PDF Template
BI Publisher Template (XPT)
Excel Template
eTextTemplate

Report
output

BI
Publisher
Report

11-ch11.indd 349 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

350 Oracle Fusion Applications Development and Extensibility Handbook

As shown in Figure 11-2, the components of the data model are

 ■ Data Sets

 ■ Event Triggers

 ■ Flexfields

 ■ List of Values

 ■ Parameters

 ■ Bursting

FIGURE 11-2. Data model editor in Fusion Applications

11-ch11.indd 350 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 351

Data Source and Data Set
A data set is based on a data source that is responsible for fetching the desired data
for reporting. Therefore, a BI Publisher data source may need to be configured by
your administrator before you can begin using the data set. The list of data sources
that can be created are shown in the following list. By default the data source for the
Fusion Transaction Database is preconfigured for Financial Supply Chain Management,
HCM, and CRM. Therefore you will notice that the data sources ApplicationDB_
FSCM, ApplicationDB_HCM, and ApplicationDB_CRM are configured out of the
box in Fusion Applications. A data source for the OBIEE server is also configured out
of the box for developing BI Publisher reports in Fusion Applications. Your
administrator can configure further data sources depending on the list of source
systems from which you wish to report data in a Fusion Applications BI Publisher
report. The following types of data sources can be created:

 ■ JDBC Connection The connect string, userid, and password of the
database are required to configure this connection. When using third-party
JDBC drivers, the corresponding JDBC driver must be installed by your
Administrator and should be available in the WebLogic Server classpath.

 ■ Database Connection Using a JNDI Connection Pool A connection pool is
set up in the application server and is identified by Java Naming and Directory
Interface (JNDI). You can specify the JNDI name to create the data source.

 ■ LDAP Server Data Source In order to prepare BI Publisher reports to produce
data from an LDAP server, you first need to configure the connection to that
LDAP server. This can be done by configuring hostname, port, username,
password, and JNDI Context Factor Class.

 ■ OLAP Data Source In order to connect to an OLAP server, its connect
string, username, password, and OLAP type must be entered when creating
the data source.

 ■ File Data Source If you want BI Publisher reports to be written directly on
top of Excel files, CSV files, or XML files, then the directory containing those
files must be configured as a data source. The full directory path on the
server should be entered and it should be given a user-friendly name.

To configure data sources, log in to http://host:port/xmlpserver, click Administration
in the top-right corner, and you will then find a section to configure Data Sources in
the top-left section of the page.

For each data source, you can specify the roles that have access to that particular
data source. For example, you may want only a particular role to be allowed for
developing reports in Microsoft Excel or XML files from a specific folder that contains
strategic finance or annual performance bonus data. Alternatively, you can enable the
public access to the data source by enabling the Allow Guest Access check box. This
will allow any Fusion Applications role to use that data source for reporting.

11-ch11.indd 351 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

352 Oracle Fusion Applications Development and Extensibility Handbook

A data set can be created after the data source has been either identified or
configured. In Oracle Fusion Applications, BI Publisher supports various types of
data sets, as shown in Table 11-1.

Data Set Based On Description

SQL Query Allows you to write a SQL query for retrieving data from the
Fusion Applications Oracle Database. It is also possible to use
the Query Builder option for constructing the SQL queries.
Query Builder presents you with a GUI to design in the data
model editor without you having to write the SQL query. The
implementers can select tables and required columns from
those tables and build joins without being SQL experts.

MDX Query These are the queries written against an OLAP database. This
type of query allows you to query multidimensional objects
such as cubes and return multidimensional cellsets that contain
cube data.

BI Analysis Allows usage of the Oracle Business Intelligence Presentation
catalog as a data source. The BI analysis internally issues a
SQL query against Oracle BI Server. Fusion Applications comes
prepackaged with BI analysis reports for a list of predefined
objects. This allows analysis of data objects, and this analysis is
sometimes referred as BI Answers.
Parameters and list of values are inherited from the BI analysis
and they display at run time.

ADF View Objects The view objects defined in ADF can be used as a data source
for BI Publisher reports. The advantage of using this approach is
that the data security policies defined in Oracle Authorization
Policy Manager can be applied at the time of retrieving the
data. In order to select the view objects, you first need to enter
the full path of the Application module such as xx.apps.hcm.
entity.applicationModule.AppraisalAM and then click the Load
View Objects link to select the view object. Finally, you can
create and map parameters for each bind variable.

Web Service You can specify the WSDL of the Web service along with the
method name that returns the XML data to be presented in a
BI Publisher report. Parameters can be added and the response
from the Web service can be tested in real time from the data
model editor by selecting Get XML Output.

TABLE 11-1. Different Data Sets Supported by Fusion Applications BI Publisher (Continued)

11-ch11.indd 352 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 353

NOTE
In addition to the data sets listed in Table 11-1,
Oracle also has added capabilities for reporting from
CSV and Endeca-based data sources. An Oracle
Endeca data source can be used for running queries
to extract meaningful information from unstructured
data. These features were added in the 11.1.1.7
version of BI Publisher 11g and we anticipate they
will soon be available in Fusion Applications.

SQL queries and the BI analysis are the most commonly used data sets for
developing reports in Fusion Applications. The prepackaged data sources used for
running SQL queries against the Fusion database connect to a schema named
FUSION_RUNTIME.

Data Set Based On Description

LDAP Query You can write queries against Lightweight Directory Access
Protocol (LDAP) data sources by specifying the LDAP attribute
names to be reported on, along with filter conditions.

XML File When setting up the data sources, you can define a file
directory as a data source. XML files can be placed in that
folder and then be used for developing BI Publisher reports to
report against the XML data.

Microsoft Excel File In a manner similar to XML files, Excel files can be used as the
data source for BI Publisher reports.

HTTP (XML Feed) You can develop BI Publisher reports on the data returned by
RSS feed by creating a data set for RSS feed. In order to create
this data set, you need to select the feed URL, Method=GET,
and optionally enter the username, password, realm, and
parameters.

TABLE 11-1. Different Data Sets Supported by Fusion Applications BI Publisher

11-ch11.indd 353 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

354 Oracle Fusion Applications Development and Extensibility Handbook

Event Triggers
You can conditionalize the execution of a scheduled report based on an event. To
implement this option, you can define an event trigger of type=Schedule. This event
trigger can be associated with a SQL query. If this SQL query returns no record, then
a scheduled run of the report will not be executed. Therefore, just prior to running
the scheduled job, the associated SQL in the event trigger is executed. If no data is
returned from the SQL, then the report job run instance is skipped. If data is returned,
the job instance runs as scheduled. One example of this feature is where you wish
to e-mail the exceptions of a nightly batch process. If there are no exceptions in the
error table, then you can skip the running of the exception listing report. On similar
lines, you may wish to skip the execution of a scheduled import process if there is
no data in the corresponding interface table.

You can also write your custom PL/SQL code to be executed before or after the
execution of data. The Before Data trigger is executed before the data set is executed,
and the After Data trigger is executed after the BI Publisher engine has generated the
XML from all the data sets within the data model. The PL/SQL function used for these
triggers must return a Boolean. In an SaaS-based environment, the customers are not
allowed to write their own PL/SQL, and therefore there is a restriction on the usage of
before and after event triggers for SaaS customers for their custom reports.

Flexfields
Flexfields allow customers to create new fields for either a code combination such
as an accounting code combination or to capture additional information. A flexfield
can have various structures, with each structure representing the different field
combinations. The data model editor supports retrieving data from flexfield values
using a lexical tag &LEXICAL_TAG. For example, to display General Ledger Accounting
Flexfield segment values in a BI Publisher report, you will create a flexfield named
XX_ACCT_FLEX in the data model under the Flexfields node as shown in Figure 11-3.
Next you will assign Application Short name=GL, and ID Flex Code=GL# with the
“ID Flex Number” being assigned from a parameter passed to the report at run time.
To display all the segments of the flexfield in the report, enter Segments =ALL and
Output Type=Value. Next, in the SQL statement of the data model, you will enter
select &XX_ACCT_FLEX,....from...where.... On similar lines, the
Flexfield lexical value can also be used in the WHERE clause or the ORDER BY
clause of the SQL statement, as shown in Figure 11-3.

11-ch11.indd 354 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 355

Lists of Values
A list of values can be created from a SQL query as shown in Figure 11-4.You can
write a SQL query to retrieve data or you can provide static values to a list of values.
A list of values is generally used for report parameters if you want to restrict the user
from entering a wrong value into the parameter.

FIGURE 11-3. Using a flexfield in reporting data model

Flexfield can be used either in SQL
SELECT or in WHERE clause or in
ORDER BY or in a FILTER.

Display either all segments or a
specific segment from a flexfield.

11-ch11.indd 355 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

356 Oracle Fusion Applications Development and Extensibility Handbook

Parameters
A parameter is used to pass values to the report at run time. A parameter can be of
three types, Text, Menu or Date, as shown in Figure 11-5. When the parameter type
is set to Menu, then you will be prompted to enter the name of the List of Values
defined as per Figure 11-5.

Parameter Type Text You can enter any free text value if you create a text type of
parameter. You can restrict the number of characters to be entered in the text field
using the “Text Field Size” field if you want validation of text length.

FIGURE 11-4. List of values can be defined to be used by report parameters.

SQL statement goes here.

11-ch11.indd 356 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 357

Parameter Type Menu If you choose the Parameter Type menu, then you will have
the option to choose a list of values. There is an option to choose multiple values
from a list of values in parameter if you check the Multiple Selection check box. You
can also restrict number values to be displayed in the list as shown in Figure 11-5.

FIGURE 11-5. Define the parameter for the report.

When the parameter type is Menu,
then it is based on a List of Values.

11-ch11.indd 357 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

358 Oracle Fusion Applications Development and Extensibility Handbook

Parameter Type Date You can create a date type parameter when you want the
user to select a date from a calendar. To default the system date in the date type
parameter, enter {$SYSDATE()$} in the Default value field.

Bursting Definitions
Bursting is used to split data into smaller pieces based on some criteria. After the
split of data has been achieved, you can then deliver those smaller pieces of data to
multiple locations. Bursting definitions contain instructions for splitting data, generating
a document in the desired format for each split section, and then delivering the
output to the desired destination using a desired mechanism. For example, you can
split the remittance advice in payables remittance print, so that each supplier can be
e-mailed the relevant payments that have been made to them. Further to that,
bursting gives you the option of applying a different layout template and delivery
mechanism to each split section of the XML generated by data model. In other
words, there is an option for you to use a different layout for certain key suppliers.
Figure 11-6 explains how bursting works.

As you might notice from Figure 11-6, the most important aspect of bursting
definitions is to answer the questions listed in Table 11-2.

FIGURE 11-6. Bursting architecture

Split By

Brusting De�nition

These �elds reference
the elements in XML
generated from the

data model.Deliver By

A SQL statement –
The main columns returned by this SQL

are the KEY, Layout Template name,
Output format, name of the delivery
mechanism, and the actual delivery

details. The value in KEY column of this
SQL is joined to the Delivery By

element’s values of the XML returned
by the data model.

Data model
resulting in XML

data being
generated.

This XML contains
the data to be
reported on.

The data is split for
delivery as per the
bursting de�nition.

Each split section is
joined to one of the

rows returned by
bursting SQL via KEY

column.

11-ch11.indd 358 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 359

Question Answer

How will the output be split
for delivery?

By using the XML element name in the field Deliver By.

How does the system decide
whether the output will be
e-mailed or delivered by fax
or by FTP?

The bursting definition SQL query will return a column named
DEL_CHANNEL. For example, you could write a SQL query to
pick the delivery channel from the supplier definition.

The data model generates an
XML output. How is it joined
to the SQL present in the
bursting definition?

The Delivery By field in a bursting definition tells you which
element of the data model XML is used for splitting the output
for delivery. For example, in a remittance advice this could refer
to VENDOR_ID. The SQL in the bursting definition will contain
an alias named KEY for the VENDOR_ID column. For example,
the value in the Delivery By XML element from the data model’s
data will be joined to the value in the KEY column of the
bursting SQL. The corresponding record from the bursting SQL
will then decide the delivery mechanism of the output.

In this example, can each
supplier record have its
own formatting and its own
delivery mechanism?

Yes, it is possible. For example, the bursting SQL can be made
to return one single record for each supplier. That record can
return a different delivery mechanism and different layout
format for each supplier.

FAX, e-mail, printing, and
FTP require different types
of values for delivery to their
corresponding destination.
How is this done?

The bursting SQL has a generic set of up to 10 parameters. For
each delivery channel, the parameters represent a different value.
When the delivery channel is e-mail, the parameter values are
PARAMETER1: E-mail address
PARAMETER2: cc
PARAMETER3: From
PARAMETER4: Subject
PARAMETER5: Message body
PARAMETER6: Attachment value (‘true’ or ‘false’)
PARAMETER7: Reply-To
PARAMETER8: Bcc
PARAMETER9 & 10: Should be left blank for e-mail
When the delivery channel is Fax, the parameter values are
PARAMETER1: Fax Server
PARAMETER2: Fax Number
PARAMETER3 to 10: Should be left blank for fax.
For a complete list of parameters for each delivery channel,
see the Fusion Applications BI Publisher documentation on
http://docs.oracle.com

TABLE 11-2. FAQ on bursting in BI Publisher

11-ch11.indd 359 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

360 Oracle Fusion Applications Development and Extensibility Handbook

Figure 11-7 shows an example of the bursting definition. It must be noted that
the example in the figure derives the delivery mechanism from the attribute columns
of the supplier tables, which may not be the same for your implementation.

You can send data to the user in different ways, which are e-mail, printer, fax,
WebDAV, file, FTP, or SFTP. E-mail and FTP are the most frequently used options.
The column OUTPUT_FORMAT specifies the type of output that is generated for the
burst data. The list of valid values for OUTPUT_FORMAT is shown in Table 11-3.

FIGURE 11-7. Bursting definition in data model

11-ch11.indd 360 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 361

Template
Templates are used to format the data for presentation. Oracle BI Publisher provides
an add-in to Microsoft Office to facilitate the coding of layout instructions into
Office documents. Most of the templates delivered in Oracle Fusion Applications
are RTF templates. An RTF template is a Rich Text Format file that contains the layout
instructions for BI Publisher to use when generating the report output. RTF templates
are created using Microsoft Word. Oracle Fusion Applications also come with an
embedded template builder tool that can be used for generating interactive HTML-
based reports.

Report Output
A report is the final output where the user can view the data in the desired format.
Some of the key output formats supported by BI Publisher are listed in Table 11-3.
The complete list can be found in Oracle product documentation, as Oracle can
add new supportable formats.

Output Format OUTPUT_FORMAT in Bursting SQL Query

Interactive Not supported for bursting

HTML html

PDF pdf

RTF rtf

Excel excel for mhtml, excel2000 for html, xslx for xslx

PowerPoint ppt or pptx

PDF pdfa for PDF/A, pdfx for PDF/X, and pdfz for zipped PDF

FO Formatted XML xslfo

XML xml

Comma Separated csv

Text text

Flash flash

TABLE 11-3. List of Formats Supported by Oracle BI Publisher

11-ch11.indd 361 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

362 Oracle Fusion Applications Development and Extensibility Handbook

BI Publisher Report Example
In this section you will find a step-by-step approach to create a data model,
template, and report with example. Fusion Applications BI Publisher environment
can be accessed using a URL similar to https://<host:port>/analytics//. In this simple
example, a report will be developed to list the users in Fusion Applications and the
role assigned to those users. The steps for developing this report are:

 1. First we need to create the data model. To extract the data for Fusion
Applications users and their roles, we can either write a single SQL query
joining the user and role tables, or we can write two separate SQL queries
and join the results of the User query to the Role query. In this example we
will write two separate queries and link them together.

 2. Create a user named XX_BIP_DEVELOPER and assign the roles: Application
Implementation Consultant, Business Intelligence Applications Worker, and
Transactional Business Intelligence Worker.

 3. Next, log in as XX_BIP_DEVELOPER user and click navigation New | Data
Model. Enter a value in the description field and select the default data
source as ApplicationDB_FSCM as shown in Figure 11-8.

FIGURE 11-8. Create data model.

11-ch11.indd 362 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 363

 4. Click the Save button to save the data model. At this point the system will
prompt you to select the data model location. Given that this is a custom
data model, select the folder structure /Shared Folders/Custom/Financials,
as shown in the following illustration. Don’t save your data model in “My
Folders,” as it will only be visible to the user from which it is created.

 5. Next, create a Text type parameter as shown in Figure 11-9 for retrieving
User and Role information based on the User Name passed as parameter.

 6. Now go to the data set node and create two data sets using the following
queries :

Query for User data set:

select user_id ,username, to_char(creation_date,'DD-MON-RRRR')
creation_date from per_users pu where username=nvl(:p_user_
name,username)

Query for Role data set:

select pur.user_id role_user_id ,pur.role_id, prdt.role_name,
prdt.description, to_char(pur.start_date,'DD-MON-RRRR') Start_

11-ch11.indd 363 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

364 Oracle Fusion Applications Development and Extensibility Handbook

date from per_user_roles pur,per_roles_dn_tl prdt where pur.
role_id=prdt.role_id and prdt.language='US'

 These data sets will be of type SQL Query as shown in the following
illustration.

FIGURE 11-9. Add a parameter to the User Role listing report.

11-ch11.indd 364 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 365

 7. Create a “User” data set as shown here.

11-ch11.indd 365 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

366 Oracle Fusion Applications Development and Extensibility Handbook

 8. Create a “Roles” data set using the query as shown here.

 9. You can edit structure by clicking the Structure tab as shown in Figure 11-10.

FIGURE 11-10. Optionally amend the structure of the XML to be generated by navigating
to the Structure tab.

11-ch11.indd 366 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 367

 10. Link both the datasets by joining the Primary key of the User data set with
the foreign key of the Roles data set by clicking >> beside the USER_ID in
the first group and selecting Create Link. Linking the data set can be done by
dragging one data set’s key value and dropping it on another data set’s key
value so that both data sets will be joined as shown in Figure 11-11. Save
using the Save button.

 11. Click the Get XML Output button to see the XML output. Enter the user name
parameter value and click Run Report so that the XML file can be generated
as shown in Figure 11-12.

FIGURE 11-11. Link the User and Roles data sets.

11-ch11.indd 367 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

368 Oracle Fusion Applications Development and Extensibility Handbook

 12. Next click the icon to the right of the Return button, and select Save As
Sample Data. Save the sample data file as XX_USER_ROLE_SAMPLE_DATA.
xml. Now we can proceed with creation of the report. Click New | Report as
shown here.

FIGURE 11-12. XML output for the two data sets

11-ch11.indd 368 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 369

 13. At this stage, the system will prompt you to select an existing data model
or to create a new data model. In response to that, click Use Existing Data
Model and select the data model that you have created earlier from the
Custom folder/Financials, as shown in the following illustration.

 14. Now click the Next button and click the Use Report Editor radio button.

11-ch11.indd 369 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

370 Oracle Fusion Applications Development and Extensibility Handbook

 15. When you click Finish, you will be prompted to save the report as shown
in the following illustration. In this example, we will save the report in the
same directory where we saved the data model.

 16. When you click the OK button, you will be presented with a window for
creating or uploading a template, as shown in Figure 11-13.

Here you can either use the built-in report editor of Fusion Applications or you
can upload a BI Publisher Template. The Basic Templates provide a few basics in
built layout formats for building the report. In this example we will first create the
template using the Embedded Template Builder. In order to do so, click on the

11-ch11.indd 370 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 371

“Header and Footer(Landscape)” template as shown in Figure 11-13. You will now
be presented with a Embedded Template Builder interface as shown in Figure 11-14.

 1. Click the Insert tab and then click Data Table. Alternatively, from the
left-hand pane Components section, click Data Table. This will create a
placeholder for a data table in your layout.

 2. Now, from the left-hand pane under the section Data Source, drag and
drop USERNAME followed by CREATION_DATE from G_USER into the
placeholder for the data table. Select the USERNAME column in the data
table, and select Group Left within the Grouping section.

FIGURE 11-13. Create or upload template.

You can use one of the Template designs
to develop your layout in the built-in
editor.

Alternatively, you can upload the
layout template that you develop
offline in third-party tools such as
MS Office.

11-ch11.indd 371 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

372 Oracle Fusion Applications Development and Extensibility Handbook

 3. Next, select the CREATION_DATE column in the data table, and again select
Group Left within the Grouping section. Doing so will ensure that the values
for USERNAME and CREATION_DATE will not repeat with every single record.

 4. Now drag Role Name and Description from G_ROLE in the Data Source
beside the CREATION_DATE in the data table.

 5. Save this layout by clicking the Save button and give the name XX_ USER_
ROLE_TEMPLATE to the layout.

A single user can have more than one role attached to them. Therefore, we need
to apply the grouping USERNAME and CREATION_DATE columns as shown in
Figure 11-15. Click the Save button and then click the Return button.

FIGURE 11-14. BI Embedded Template Builder

Drop the desired fields into
the data table.

Drop the data table here.

11-ch11.indd 372 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 373

Now the Layout Template has been created. Click View Report to see the actual
output of the report.

FIGURE 11-15. Create the layout and define a grouping of columns.

Select username and change the Grouping property to Group
Left. Repeat this property setting for Creation Date.

11-ch11.indd 373 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

374 Oracle Fusion Applications Development and Extensibility Handbook

Enter the value of the username parameter and click the Run button to run the
report. You will able to see the output as shown in the following illustration. You can
also perform sorting and other basic functionality on data as shown here.

Parameter

The example shown in the preceding steps was a very simple example to build
the reports using the built-in layout editor of Fusion Applications. You can use this
technique to build reports using interactive charts, pivot tables, and so on as shown
in Figure 11-16.

You can also create a layout template using the BI Template builder plugin in
Microsoft Word as shown in Figure 11-17. To do so, it is assumed that you have already
downloaded and installed the BI Publisher plugin for MS Office, which can be
downloaded from the Oracle Web site. After developing your template, save it as an
RTF file in Microsoft Word.

11-ch11.indd 374 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 375

FIGURE 11-17. Create template using MS Office.

After the BI publisher plug-in for MS
Office is installed…

. . .load the XX_USER_ROLE_
SAMPLE_DATA.xml here.

After loading the sample data, drag and drop the
Table Wizard and follow the instructions.

You can preview the output offline
based on the sample XML data.

FIGURE 11-16. Other component types and export formats supported in the built-in
layout editor

Using the built-in layout editor, you can embed charts,
pivot tables, and so on, to give drill-down to data.

During run time, the output can be
exported to these formats.

11-ch11.indd 375 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

376 Oracle Fusion Applications Development and Extensibility Handbook

Create a new report following the steps shown subsequent to Step 12, and then
upload the RTF file by clicking the Upload button shown in the bottom-left corner in
Figure 11-13. Next you can log in, and within the Reports and Analytics menu, you
can search for the folder where you saved the report and click the View Report link
as shown in Figure 11-18. Enter the value for the parameter and run the report to
view the output. You can also schedule the report and deliver the output using
different options such FTP, e-mail, and so on.

System Variables in BI Publisher
for Fusion Applications
BI Publisher stores the current user context, which can be accessed by your report
data model. The following system variables are used by BI Publisher.

FIGURE 11-18. Run the report from the menu.

You can view the
output of this report.

11-ch11.indd 376 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 377

System Variable Description

xdo_user_name
UserID of the user submitting the report. For example:
Administrator

xdo_user_roles
Roles assigned to the user submitting the report. For
example: XMLP_ADMIN, XMLP_SCHEDULER

xdo_user_report_
oracle_lang

Report language from the user’s account preferences.
For example: ENG

xdo_user_report_
locale

Report locale from the user’s account preferences. For
example: en-US

xdo_user_ui_oracle_
lang

User interface language from the user’s account
preferences. For example: US

xdo_user_ui_locale
User interface locale from the user’s account
preferences. For example: en-US

To add the user information to your data model, you can define the variables as
parameters and then define the parameter value as an element in your data model.
Or, you can simply add the variables as parameters and then reference the
parameter values in your report. The following example returns only those expense
reports that were created by the user running the report:

select * from exm_expense_reports where created_by = :xdo_user_name

Customizing the BI Publisher Layout Templates
It is very common in implementation projects to modify the template for changing
the layout or design of a report. Typical tasks are adding, modifying, or deleting
fields or columns or moving the fields in the layout. After you have modified the
template, it must be published to the Oracle BI Publisher server for the changes to
take effect.

The steps to modify the BI Publisher Layout Template are as follows:

 1. Download and rename the template.

 2. Modify and upload the template.

These steps are explained in the following section, citing the example for
customization of the Printable Expense Report Template.

11-ch11.indd 377 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

378 Oracle Fusion Applications Development and Extensibility Handbook

Download and Rename the Template
To download the Printable Expense Report Template, perform the following steps:

 1. In Oracle BI Publisher Enterprise, log in as a user with Administrator access.

 2. In the toolbar, click the Catalog menu.

 3. In the Catalog pane, open Shared Folders and then open the Financials
folder.

 4. Select the Expenses folder and then select the Printable Expense Report
Template icon and click the Edit link. The Printable Expense Report Template
tab appears.

 5. In the Printable Expense Report Template tab, click the Edit link. This will
prompt you to save FinExmExpenseTemplate.rtf to your desktop. Save the
Printable Expense Report Template locally.

 6. To create a copy of the Printable Expense Report Template by renaming it,
click the View a List link in the upper-right corner of the page. The Layout
region appears.

 7. In the Layout region, change the template name in the Name field from
FinExmExpenseTemplate to xxFinExmExpenseTemplate.

 8. To save the name change, click the Save icon in the toolbar.

 9. Rename the RTF file to xxFinExmExpenseTemplate.rtf before making the
changes.

Modify and Upload the Template
To modify the Printable Expense Report Template, you can open the RTF file that
was downloaded. Your change may be to just change the Submission text in the
header section of the template so as to specify the address for sending the original
expense receipts to the Payables department. Next, repeat Steps 1 to 4 as listed for
downloading the template, and perform the following steps.

 ■ In the Printable Expense Report Template tab, click the View Thumbnails link
in the upper-right corner of the page and then click the Add New Layout
icon. The Printable Expense Report Template tab appears.

 ■ In the Upload or Generate Layout region, click the Upload icon. The Upload
Template File dialog box appears.

 ■ In the Layout Name field, enter xxFinExmExpenseTemplate.

11-ch11.indd 378 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 379

 ■ In the Template File field, browse to and select the locally saved template to
which you made changes.

 ■ In the Type field, select RTF Template.

 ■ In the Locale field, select English (United States).

 ■ To upload the modified Printable Expense Report Template to the Oracle BI
Publisher Enterprise server, click the Upload button.

 ■ To save the changes to the Printable Expense Report Template, click the Save
icon in the toolbar.

Further Information on
Reporting in Fusion Applications
Reporting is a vast area in Fusion Applications. The preceding sections present you
with one of the commonly used reporting techniques in the implementation projects
using the BI Publisher. There are various other tools and techniques supported by
Fusion Applications to generate reports. See Chapter 12 to understand the finer
details of analytical reporting in Fusion Applications.

Other Reporting Techniques in Fusion Applications
Given that Fusion Applications leverages OBIEE, it therefore opens up various other
reporting techniques that are supported by the OBIEE technology. Oracle Business
Intelligence Enterprise Edition (OBIEE) is an industry-leading enterprise business
intelligence tool that includes a scalable and efficient query and analysis server, an
ad-hoc query and analysis tool, interactive dashboard infrastructure, proactive
intelligence and alerts functionality, and an enterprise-reporting engine.

Furthermore, Fusion Applications comes prepackaged with Essbase, which
further allows tools such as Financial Reporting Studio and Smart View to be used
for reporting.

 ■ Analysis Editor Can be accessed via menu Navigator | Tools. It is a
subcomponent of OBIEE and is also known as BI Answers. It lets you
explore and interact with data by presenting data in tables, graphs, pivot
tables, and so on.

 ■ Oracle Transactional Business Intelligence (OTBI) A predefined set
of OBIEE repository (.rpd) and Web catalog are supplied with Fusion
Applications. These reports are typically based on the ADF view objects.
These reports are designed to report on operational data from the Fusion
transaction database in real time.

11-ch11.indd 379 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

380 Oracle Fusion Applications Development and Extensibility Handbook

 ■ BI Composer BI Composer is a wizard-based tool to generate analyses
based on subject areas. It allows users to modify the embedded analytics in
Fusion Applications, such as adding content from the BI Catalog, as well as
extending existing content such as adding new analysis columns, creating
alternative views of data, sorting and filtering the data, and applying
conditional formatting.

 ■ Mobile BI Reports can be made available to the mobile platform using
Application Composer in Fusion Applications. To develop reports for a
mobile platform, log in to Fusion Applications, and click the Application
Composer link. Select the application from the drop-down list, and click the
link for Manage Mobile Report. Here you will be able to create a new report
using predefined analytics as shown in Figure 11-19.

Next, you need to save the report and add it to the ADF Mobile springboard. The
report then becomes available on the mobile platform as shown in Figure 11-20.

FIGURE 11-19. Create a report for a mobile platform.

1

3

2

11-ch11.indd 380 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 11: Reports 381

FIGURE 11-20. Making the Fusion Applications report available on mobile platform

1

2

3 4

Save after adding to Springboard.

11-ch11.indd 381 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

382 Oracle Fusion Applications Development and Extensibility Handbook

 ■ Financial Reporting Studio This is an Oracle Hyperion tool installed on
your desktop and it allows you to develop reports primarily on Essbase
database.

 ■ Smart View tool This again is an Oracle Hyperion tool. Once the tool
has been installed, a tab named Smart View is visible in Microsoft Excel as
shown earlier in Figure 11-17. This plugin allows users to connect Excel to
Essbase Server to report data from multidimensional cubes. Smart View also
allows data to be entered into Essbase using the Excel front end.

Summary
In this chapter you learned the techniques for developing BI Publisher reports in Fusion
Applications. You also learned the customization techniques for the reports and other
reporting techniques. After reading this chapter, you will appreciate the tremendous
potential the reporting architecture in Fusion Applications offers to the business. As a
developer you can develop reports that can display data from a variety of sources into a
single report, which allows the management to get all the relevant information for a
report in a single place, which can be presented in real time.

11-ch11.indd 382 11/12/13 12:33 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
12

Analytics in
 Fusion Applications

12-ch12.indd 383 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

384 Oracle Fusion Applications Development and Extensibility Handbook

Oracle Fusion Applications provides various mechanisms to report on your
data. The nature of the reporting technique that you use depends on the
reporting requirement. The three key techniques are BI Publisher, Oracle

Business Intelligence Applications (OBIA), and Oracle Transactional Business
Intelligence (OTBI). In addition, some products in Fusion Applications leverage the
Oracle Hyperion suite that comes with Financial Reporting Studio and the Smart
View tools that can also be used for reporting.

The BI Publisher-based reports are explained in Chapter 11.
OBIA is a technique that extracts the transactional data from Fusion Applications’

transactional database and places it into a data warehouse. OBIA is mainly used for
trending, historical analysis, and strategic reporting with drill-down capabilities.
OBIA comes out of the box with a prepackaged data warehouse for Oracle EBS,
PeopleSoft, JD Edwards, Siebel, and Fusion Applications.

OTBI allows business users to report and analyze transactional data in self-service
or ad-hoc mode in real time and therefore it does not require a data warehouse.
One of the key aspects of OTBI is that it retains the transactional data security roles
applicable for the user. For example, if a business user cannot create purchase
orders for a specific organization unit, then OTBI can ensure that the very same user
cannot report on the purchase orders for that organization. This is made possible
because OTBI leverages the same data security as used by ADF screens. For the
details of data security, please refer to Chapter 4. In this chapter we will present the
OTBI architecture and will describe the steps involved in developing analytic reports
using OTBI.

OTBI Architecture and Concepts
OTBI leverages the Oracle OBIEE (Oracle Business Intelligence Enterprise Edition)
technology for querying and reporting. Therefore, in order to understand OTBI, it is
important to first understand the underlying OBIEE concepts from a developer
perspective.

Introduction to OBIEE
OBIEE comes with a Windows-based tool to develop the contents for reports. This
tool is also known as the OBIEE client tool or Oracle BI Administration Tool. The
instructions for downloading the correct version of this tool for your Fusion
Applications version can be found in Oracle Support Note 1446674.1.

The purpose of the tool is to allow developers to collate the data sources and to
design and develop the contents of the reports. The repository that contains the
metadata for contents of the report in OBIEE is a file with an extension of .rpd. This
is also referred to as the RPD or the repository file. Oracle Fusion Applications comes
shipped with an RPD file. which can be opened by accessing the file by FTP from

12-ch12.indd 384 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 385

the Fusion Applications server, or the RPD can be opened in online mode by
connecting to the Fusion Applications BI Server. You can refer to Oracle Support
Note 1452102.1 to know the location of the RPD file on the server.

After the OBIEE Administration Tool has been installed in your Windows
environment, you can open the Fusion Applications RPD in online mode as shown
in Figure 12-1. The connection name FA in Figure 12-1 is an ODBC data source that
you must define in your Windows environment where the OBIEE Administration
Tool is installed. To install this data source, go to Control Panel, and add a data
source to connect to Oracle BI Server using the WebLogic username and password
for the Business Intelligence domain.

Dimensions and Facts
In the analytics and data warehouse world, it is very common to hear the words
dimensions, facts, and measures. Dimensions are used to narrow down a set of data.
For example, you may wish to report your global sales on regions such as by continent
or by countries or by states or cities within the states. In this case, a region is a
dimension, and a dimension hierarchy is required to report for sales at any level in the
region hierarchy. Some other common dimensions are customer, line of business,
time, product, and so on. Using these dimensions, you can measure the activity within
an organization at relevant levels. In other words, it provides who, what, when, and
why for the transactional facts. These dimensions have a dimension table that has a

FIGURE 12-1. Opening the OBIEE repository for Fusion Applications in online mode

12-ch12.indd 385 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

386 Oracle Fusion Applications Development and Extensibility Handbook

unique column known as a surrogate key. For example, in a data warehouse, a
CustomerRowID can be a surrogate key in a customer dimension table. This
dimension table can have further attributes such as customer name, customer number
competitor flag, country code, customer status, and so on.

Measures belong to a fact table. For example, columns such as UnitPrice,
QuantityOrdered, and QuantityDelivered are the measures in a fact table named
POR_REQUISITION_LINES_ALL. Unlike the dimension tables, the fact tables can
have a huge number of records, and therefore you will find that the fact tables are
normalized.

Layers in the OBIEE RPD File
After you have opened the RPD, you will notice that there are three layers in the
repository. These are the Physical, Business Model and Mapping, and Presentation
layers. These layers for the Fusion Applications are shown in Figure 12-2.

The Physical layer contains the references to the actual tables and columns of a
data source. It also contains the connection definition to that data source. In this
layer some of the key activities that you perform are to define joins, primary keys,
and foreign keys. It must be noted that the Physical layer does not contain any data;
it merely contains the pointers to the data sources, and the connection to those data
sources is established using the connection pool for that data source.

The Business Model and Mapping layer is where you create an abstract business
layer on top of referencing the physical layer. You can also combine the data from
various sources of the Physical layer. For example, a large organization grown by
acquisitions might have Siebel in one business unit, and Oracle EBS in another
business unit. Using this Business layer, you can create a common business entity for

FIGURE 12-2. RPD file for Fusion Applications

12-ch12.indd 386 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 387

a customer that collates the sales orders from the Oracle EBS tables and the Siebel
sales tables. Therefore, in this example, the Business layer of RPD helps us to present
a unified view of sales orders across the enterprise. The ability to stitch together the
data from multiple physical sources is also known as federated querying.

As seen in Figure 12-2, RPD for Oracle Fusion Applications contains a predefined
business model named Core. This contains all the logical tables, logical columns,
logical joins, and dimension hierarchies for reporting on data in Fusion Applications.
A logical table source defines the mapping from a single logical table to one or more
physical tables. For example, a logical table for GL Journals Real Time is sourced from
three data sources, that is, JournalBatchPVO, JournalHeaderPVO, and JournalLinePVO
as shown in Figure 12-3.

The Presentation layer consists of subject areas, which represents the content of the
Business layer for the end users. The subject areas organize content for users in such a
manner as to map to their business needs for reporting and analysis requirements. The
subject areas are further divided into presentation tables, which organize columns into

FIGURE 12-3. One logical table can be mapped to more than one physical source object.

Fact Table Logical columns Joins for the physical sources.
Journal Lines joined to Journal
Header and Journal Batch tables.

12-ch12.indd 387 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

388 Oracle Fusion Applications Development and Extensibility Handbook

categories of business data. Further down are the presentation columns, which are
mapped to the Business Model and Mapping layer. It is a normal practice to present a
different name to the presentation column by overriding the Logical Column Name.
This is done to ensure that the column names are user-friendly, because the business
users running the reports are agnostic to the underlying data structures in physical and
logical layers. As shown in Figure 12-2, all the subject areas that have their names
ending with the word “Real Time” are the OTBI subject areas.

Leveraging OBIEE in Fusion Applications
OTBI uses OBIEE as the query and reporting tool, and uses browser-based Oracle BI
Dashboard as an end-user tool to give business users an easy-to-use interface to
perform a current state analysis of their business applications. When the user runs an
OTBI report, the constructed queries are executed in real time against the transactional
schema referenced by ADF (Application Development Framework) view objects.

For those not familiar with Oracle ADF business components, it is worth noting
that an entity object represents a database table, and an instance of an entity object
represents a record in the entity object. A view object is a wrapper around the entity
object. A view object is encapsulated in an Application module that manages the
state of the ADF page at run time. The encapsulation of a view object into the
application module gives rise to a view object instance. The view object instance is
responsible for displaying the data from the tables in the ADF screen. Having said
that, ADF screens can source data in various other ways as well, which are beyond
the scope of this chapter. The view object can be based on a SQL statement as well,
in which case it becomes a read-only view object. The relationship between view
objects is established by the creation of view links, which helps join the results of
different view objects.

In OTBI, an ADF view object can represent facts or dimensions tables, implement
applications data security, and handle multilanguage support. As you have learned
in Chapter 4, dynamic WHERE clauses can be applied to the view objects using the
data security framework. This data security for ADF view objects is inherited by
OTBI reporting because the same set of transactional view objects is used in the
OBIEE’s Physical layer for OTBI, as shown in Figure 12-2.

Key features of OTBI are listed in Table 12-1.

12-ch12.indd 388 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 389

Development Process for OTBI Reports
As shown in Figure 12-4, the OTBI uses the ADF view objects and Essbase cubes as
a source for data in the Physical layer.

The OBIEE is integrated with ADF Business Components to generate reports on
transactional data. The OBIEE RPD in Fusion Applications comes preconfigured with
database sources for CRM, Financials & Supply Change Management, and Oracle
Fusion HCM. These OBIEE data sources connect to the ADF business components via

Feature Description

Self-service ad-
hoc analysis

Business users can easily access, analyze, and use the
transactional information in their reporting.

Access real-time
data

OTBI allows creating reports with real-time transactional data
without any latency, with data reported directly from Oracle
Fusion Applications tables.

Seamless
integration with
Oracle Fusion
Applications

Leverages the Fusion Applications login and password. OTBI
also uses the same data security as Oracle Fusion applications,
with no separate data security setup required. Any changes done
on Oracle Fusion Applications data security are immediately
available in OTBI as well.

Speed of report
development

The user interface screens already contain view objects that
have all the desired joins to bring back the necessary data to
be displayed in the Fusion Applications screens. In traditional
BI development, you have to remodel those joins in the BI
development tool, and the BI developer needs to understand
the joins of the operational database. With OTBI, the report
developer simply reuses those joins by importing the ADF view
objects that contain the necessary joins to the tables. Not only
that, the view links joining the different view objects can also be
automatically imported and automatically created into complex
joins in OBIEE. This reduces the time for developing reports.

Report-building
capability

Oracle BI Answers is used as the interface to build and modify
reports for ad-hoc analysis. You can also use BI Composer to
build and modify reports.

Flexible and
extensible

Leverages Oracle Fusion Applications concepts such as flexfields,
trees, single sign-on, embedded content, and multilanguage. It is
easy to add additional attributes, measures, or reports.

TABLE 12-1. Key Features of OTBI

12-ch12.indd 389 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

390 Oracle Fusion Applications Development and Extensibility Handbook

OBIEE Broker as shown later in the URL field of Figure 12-6. Each of these applications
has its respective parent ApplicationModules, which encapsulate all the transactional
view objects for reporting. The Oracle Fusion RPD file comes shipped with these
Applications Modules imported for OTBI reporting.

To generate new OTBI reports based on ADF view objects, first you need to import
the ADF View Objects metadata into the OBIEE Physical layer using the Administration
Tool, then map the data from the Physical layer to the Business Model and Mapping
layer and then to the Presentation layer. After you restart the Oracle BI Server and
reload the metadata into Oracle BI Presentation Services, you can log in to Oracle
BI Answers and drag and drop the columns to generate a report on the imported
metadata.

During the import of the ADF view objects into the physical layer of OBIEE, the
required physical table representations are automatically created for the view objects.
Likewise, the joins in physical layers are automatically created for the view links as
shown in Figure 12-5. View links are used to create the master-detail relationship
between different view objects in ADF. These get automatically converted into complex
joins during the import of ADF, as shown in Figure 12-5. Note that the External
Expression field in the Complex Join dialog for ADF data sources is populated with
the join condition defined in the view link.

The name of the automatically generated joins follows a naming convention
similar to ViewObjectName1_ViewObjectName2 (for example, AppModuleAM.
AP_VO1_ AppModuleAM_BU_VO1). The ViewLink instance name appears in the
ViewLink Name field of the Complex Join dialog. The complex joins are only created
automatically if a ViewLink instance is available. In Oracle ADF, when the view link

FIGURE 12-4. OTBI architecture

OTBI

OBIEE Logical and
Presentation Layer

OBIEE Physical
Layer

Data
Source

Fusion Applications
Transactional Database

Essbase

Ad Hoc Reports

Business Model

ADF View Objects

ADF Entity Objects
SQL
Bypass

Essbase Cubes

Subject Areas

Prebuilt Reports Dashboards

12-ch12.indd 390 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 391

FIGURE 12-5. Complex joins created for view object links in OBIEE

or view object is included within an Application Module, it then becomes a view
link or view object instance respectively. The complex joins are not created for
ViewLink definitions that do not have an instance with an Application Module. Joins
for these ViewLink definitions must be created manually. To do this, you can specify
the ViewLink definition name in the ViewLink Name field of the Complex Join dialog.
Be sure to use the fully qualified VO instance names for the source and destination
VOs, as well as the fully qualified package name for the ViewLink definition.

After the import, the ADF Metadata gets modeled into OBIEE as shown in
Table 12-2.

12-ch12.indd 391 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

392 Oracle Fusion Applications Development and Extensibility Handbook

Even though joins in the Physical layer are created automatically for you using
view links, you can still create your own joins as well. This is required when ADF
view links exist but they do not have a view link instance created. To create joins
manually, you can either click the Foreign Key tab of the Physical Table dialog box,
or right-click on selected tables and select Physical Diagram | Selected Object(s)
Only and then drag and drop the links in the diagram modeler.

Query Optimization in OTBI There are two ways for OBIEE to retrieve data from
the database. For example, to display journal lines along with journal header level
fields, OBIEE can retrieve the data from the Journal Lines view object and the Journal
Headers view object and then perform the joins between the two data sets as per
the joins defined in view link definitions. However, this mechanism to retrieve the
data is not efficient because OBIEE has to retrieve the data from each view object
and then perform joins in the memory of BI Server to collate the desired results for
presentation.

To ensure that data is retrieved for such scenarios from journal lines and journal
header tables in a single SQL execution, OTBI uses the OBIEE feature called SQL
Bypass. This feature is enabled in Fusion Applications via the connection pool
definition that connects OBIEE to the ADF Application Modules as shown in
Figure 12-6.

In this scenario, when a business user runs an OTBI report on the “General
Ledger - Journals Real Time” Subject area, the Oracle BI server at run time creates a
composite view object that contains the joins between the Journal Header and
Journal Lines tables. The resultant SQL statement of this composite view object is
then executed directly in the database to return a single data set for the desired data.
This means that only one SQL statement with all the necessary joins is executed for
the desired results across multiple database tables, rather than executing multiple
SQL statements for each view object in the physical layer. When implementing SQL
Bypass, the Oracle BI server ensures that the data security conditions for the logged-in

TABLE 12-2. ADF Metadata Modeled in OBIEE

ADF Metadata Imported BI Metadata

Root Application Module Database

View Objects Physical Tables

View Object Attribute Physical Column

View Object Key Physical Key

View Links Physical Joins

12-ch12.indd 392 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 393

users are retained. Further to that, the BI server also prunes out the unneeded view
objects and the ADF Composite view object API prunes out the unneeded entities,
so that the bare minimum set of database tables is queried to retrieve the columns
desired by the user’s reports.

Security in OTBI
The OTBI Security model consists of users, job roles, duty roles, and privileges. A user
can be assigned to one or more job roles. A job role is descriptive of the user’s job
function, such as General Ledger Clerk or Accounts Payable Manager. A user is granted
a job role and a job role has one or more associated duty roles. A job role can span all
the applications, whereas a duty role is specific to an application. Job roles are grouped
hierarchically to reflect lines of authority and responsibility. Privileges allow specific
access to an application or reporting objects and data sets; for example, read access to
a report, or read access to a table, and so on. Privileges are associated with duty roles.
As soon as a user logs in to Fusion Applications, the system knows the function and
data security applicable for that logged-in session. For example, when a department
manager views a headcount of staff using an OTBI report, the manager will only see
the count of staff that report to them in their supervisor hierarchy. However, when an
HR Administrator runs the same report, given their data access security, they will be

FIGURE 12-6. SQL Bypass allows a query with joins to be executed directly in
the database.

12-ch12.indd 393 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

394 Oracle Fusion Applications Development and Extensibility Handbook

able to see the complete staff headcount. This is made possible because the OTBI
respects the data security constraints on the underlying view objects. This security is
applied despite the usage of the SQL Bypass feature.

To ensure that the users are enabled for baseline OTBI reporting access, a role
named FBI_TRANSACTIONAL_BUSINESS_INTELLIGENCE_WORKER must be
assigned to a user. Further to that, the relevant duty roles can be assigned to the users
for granting them access to a group of reports. For example, OTBI Duty Role
FBI_GENERAL_LEDGER_ TRANSACTION_ANALYSIS_DUTY has access to the
following subject areas:

 ■ General Ledger - Balances Real Time

 ■ General Ledger - Journals Real Time

 ■ General Ledger - Period Status Real Time

 ■ General Ledger - Transactional Balances Real Time

 ■ Subledger Accounting - Journals Real Time

 ■ Subledger Accounting - Supporting References Real Time

OTBI Function Security Job roles and their associated duty roles and privileges are
assigned to users of Oracle Fusion Applications. The implementation team usually
indicates which users can access which application menu or page. This level of
security is known as function security. This function security also secures access to
OTBI reporting objects by assigning BI-specific duty roles to BI-specific job roles.

In Fusion Applications, you will find that for every given subject area, usually a
single BI duty role is defined, using the naming convention “<xyz>Analysis Duty”.
Some examples are Account Analysis Duty and Expense Analysis Duty roles. The BI
duty role can be mapped to the subject area using the RPD file as shown in
Figure 12-7, by clicking the button labeled Permissions in the Subject Area
property window.

In order to know the list of roles for the desired subject areas, it is possible to run a
report in the OBIEE Administration Tool. To run this report, execute the following steps:

 1. Log in to the OBI Administration Tool and connect offline to the Fusion
Repository.

 2. In the Presentation layer, multiselect the desired subject areas for which a
Permission Report is required.

 3. Right-click and select Permissions Report.

 4. This will list each select subject area, along with the duty role that has been
granted read access to that area. If you wish to save this output in a CSV file,
then click the Save As button and save the file in CSV format.

12-ch12.indd 394 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 395

OTBI Data Security OTBI data security relies heavily on the Oracle Fusion
Applications concepts of data security. Oracle Fusion Applications data security is
based on data security roles and privileges stored in a table named FND_GRANTS.
This content encodes the role (which spans all applications); the application-specific
privileges, which indicate which action can be performed against which entity
(where an entity is a logical business object that may be made up of multiple Fusion
Applications tables); and a specification of the actual tables and SQL WHERE clause
that filters the database rows constituting the logical entity. Privileges are assigned to
job roles in FND_GRANTS. This security implementation model means that the
same privilege can be specified by any number of roles for any number of row sets
(which define the logical entities).

The ADF view object enforces transaction data security by looking up its security
specification at run time, from FND_GRANTS. An existing FND_GRANTS security

FIGURE 12-7. Use RPD to map a subject area to a duty role in the Presentation layer.

12-ch12.indd 395 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

396 Oracle Fusion Applications Development and Extensibility Handbook

specification is referenced indirectly through an ADF view criteria object attached to
the ADF view object. In other words, the view criteria acts as a security filter of the
view object and such criteria is given a name of the form FNDDS__Privilege/Action__
ObjectName__ObjectAlias. The Fusion Applications run-time logic uses the ADF
view object’s view criteria name to find the relevant FND_GRANTS specification
and uses that specification to generate a SQL WHERE clause that enforces data
security.

OTBI Examples and Guidelines
Oracle Fusion Applications comes prepackaged with a huge number of dimensions
and facts. Using this prepackaged information, ad-hoc OTBI reports can be created
by the users where standard reports do not suffice for their needs. In such cases, the
business users can define reports of their own choice without having to depend on
their IT department. To make this possible, Oracle Fusion Applications contains
prebuilt star schemas designed for analysis and reporting. The prebuilt Business
Intelligence ADF view objects are also delivered out of the box for a large number
of operational tables in Fusion Applications. The shipped RPD file for Fusion
Applications contains premapped metadata, including embedded best practice
calculations and metrics for financial, executives, and other business users.

In on-premise implementations of Fusion Applications, the business
requirements may dictate the necessity of creating custom tables and custom
applications to meet their operational requirements. In such cases there is a need to
import the custom ADF view objects into OBIEE so that those can be made available
for ad-hoc OTBI reporting by the users.

The implementation team can also configure some descriptive flexfield segments
that might have to be exposed to the business users for ad-hoc reporting via OBIEE.
In such cases, the ADF view objects associated with flexfields need to be imported
into OBIEE and made available to the subject area.

A Simple Analysis Report with Graph
In this simple example we will see how a business user can create a report that
displays the list of posted and unposted journals with their debit amounts. The
results will be displayed in a tabular format and also will be displayed in a graphical
format. Using this report, a business user can get an idea of the number of journals
that remain unposted in General Ledger. In order to develop this report, we will be
using a preshipped subject area in OTBI. The sequence of steps followed will be to
firstly create a new analysis report, and then select the desired columns from the
subject area and then define a graphical view for the output.

Log in as the XX_FA_IMPLEMENTOR user that was defined in Chapter 4 using
the URL https://<hostname>:<portname>/analytics. Click New | Analysis as shown

12-ch12.indd 396 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 397

in the following illustration. At this point in time, you will be prompted to select a
subject area. Select “General Ledger - Journals Real Time” as your subject area.

You will notice that by default a Criteria tab will be presented to you. Within the
subject area you will be presented with the dimensions and the facts, with dimensions
being presented on the top. This subject area has Time, Posting Status, Approval Status,
Journal Batches, Journal Headers, and Journal Lines as dimensions and facts.

Expand the Time dimension tree and double-click on Accounting Period Name.
By doing so, this column will become a selected column for your ad-hoc report.
Expand the Posting Status dimension tree and double-click on Posting Status Meaning
to be included. Within Journal Headers, expand Ledger and double-click Ledger
Name. Expand Headers and double-click Running Total Accounted DR. The report
design will look similar to the image shown in Figure 12-8.

FIGURE 12-8. Create a report using an existing subject area.

Click here if you wish to create filters on any set of
columns to filter data displayed in the report.

12-ch12.indd 397 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

398 Oracle Fusion Applications Development and Extensibility Handbook

Click the Results tab, which is displayed in Figure 12-8, to see the results in
tabular format. Next, click the New View (+) icon that is to the right of the refresh
icon and select Graph | Pie. This will display the default graph region. Click the Edit
Pencil icon in the Graph region and drag and drop the Posting Status Meaning
column into the Pies and Slices region as shown in Figure 12-9.

FIGURE 12-9. Include Posting Status to slice the graph.

Remove Ledger from here, and drag and drop Posting
Status Meaning into the Pies and Slices area.

12-ch12.indd 398 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 399

Next, click the Done button to see the report as shown in the following illustration.

As you can see, a business user has the capability to create a new report with a
few mouse clicks. After finalizing the report, the user can save the report to a desired
custom folder or their own folder if they are the only person to ever run this report
in the future.

Importing Custom Objects
into OBIEE for OTBI Reporting
Custom objects are required when you make extensions to the product. For those
extensions you may create new database tables. These database tables may also
have some data security applied to them via view objects and APM. In such cases,
you may wish to grant the user the control to generate ad-hoc reports on those
custom tables in a secured manner.

In this example we will see the steps that are involved in making these custom
view objects available to the OBIEE Physical layer. After these objects have been
imported into the OBIEE Physical layer, you can then create a business model and
mapping and the subject area in the Presentation layer. The subject area can be
granted read permissions to a duty role. If a user has been granted that duty role via
a job role, then they will be able to create ad-hoc reports on the custom tables.

12-ch12.indd 399 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

400 Oracle Fusion Applications Development and Extensibility Handbook

Let us assume that you have already created a BC4J (Business Components For
Java) model for Department and Employee View Objects in a project named Model.
jpr in an application named XxBiDemo. After creating the Application Module,
View Object, and View links, create a Deployment profile by selecting the Model.
jpr project in JDeveloper, and on the menu, click File | New. In the New Gallery
window, select the All Technologies tab, and within the General category, select
Deployment Profiles. In the right-hand side pane, select Business Components
Archive. Accept the default and this will result in a default deployment profile
bcProfile1 getting created as shown in Figure 12-10.

Next, we need to make custom ADF view objects available for the OBIEE Broker
Servlet, so that using the OBIEE Broker Servlet, the OBIEE’s Physical layer can connect
to these custom BC4J objects. Again in JDeveloper, create a new Web Project using
File | New | General | Projects, and then in the right-hand pane, select Web Project.
We have given the name OBIEEBroker to this project for convenience, but you may
select any another name. At this stage the wizard will prompt you to select a Web
Application Version and select Servlet 2.5\JSP2.1 (Java EE 1.5) as the servlet type
and click Next. For Page Flow Technology, select the option “None” in the wizard.
Click Next again to skip the selection of Tag Libraries, and then in the Web Project
Profile window of the wizard, override the Java EE Web Application Name and Java
EE Context Root by OBIEEDemo. Note that this root context name will appear in the
URL of the OBIEEBroker that you will use to connect to ADF objects from the OBIEE
Administration tool.

After having created this Web project, we need to include the libraries for BI
Integration and applcore into this project. To do so, select the OBIEEBroker.jpr
project, and in the Application Resources section of JDeveloper, expand Descriptors
| META-INF and double-click weblogic-application.xml. Select Libraries in the
left-hand pane, and in Shared Library References, add two libraries as shown in
Figure 12-11.

FIGURE 12-10. Create a deployment profile for your model project with custom
view objects.

12-ch12.indd 400 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 401

In the Projects section for OBIEEBroker, within WEB-INF, double-click web.xml
and edit the web.xml file to include a reference to the OBIEE Servlet class. Also,
map that servlet to a URL pattern /obieebroker as shown in the servlet-mapping
node of the following web.xml snippet:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/
xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <context-param>
 <description>This holds the Principals (CSV) that a valid end user should
have (at least one) in order to query the ADF layer from BI.</description>
 <param-name>oracle.bi.integration.approle.whitelist</param-name>
 <param-value>DISABLE_BI_WHITELIST_ROLE_CHECK</param-value>
</context-param>
<filter>
 <filter-name>ServletADFFilter</filter-name>
 <filter-class>oracle.adf.share.http.ServletADFFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>ServletADFFilter</filter-name>
 <servlet-name>OBIEEBroker</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
 <servlet-name>OBIEEBroker</servlet-name>
 <servlet-class>oracle.bi.integration.adf.v11g.obieebroker.OBIEEBroker
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>OBIEEBroker</servlet-name>
 <url-pattern>/obieebroker</url-pattern>
</servlet-mapping>
</web-app>

FIGURE 12-11. Add the applcore and BI libraries to the Web project.

12-ch12.indd 401 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

402 Oracle Fusion Applications Development and Extensibility Handbook

The URL pattern can be any text instead of obieebroker, and that text is used for
constructing the URL used by the OBIEE Administration Tool to connect to OBIEE
Broker.

Finally, before we deploy the model and the Web project, we need to build an
assembly that stitches the model and Web project together. Remember that the Web
project OBIEEBroker.jpr is created as a proxy reference to allow connection to BC4J
objects by OBIEE Broker Servlet. Select OBIEEBroker in the projects section and
click the JDeveloper menu Application | Application Properties. Here you can
configure our OBIEEBroker Web Project to include references to the BC4J components
jar files so that OBIEE Broker Servlet can reference the ADFbc components, which
are the custom application module, view objects, and view links in this case. The
instructions for building this assembly are shown in Figure 12-12.

Next, deploy the entire application XxBiDemo to the CRM domain of Fusion
Applications. This can be done via JDeveloper as well for your development
environment. After the application has been deployed, navigate to the Enterprise
Manager for the Oracle Fusion CRM using a URL similar to http://<host>:<Port>/em,
and make a note of the URL for OBIEE Broker Web App as shown in Figure 12-13.

FIGURE 12-12. Create an assembly that includes BC4J Project and OBIEE Broker Web App.

12-ch12.indd 402 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 403

To this URL, append the servlet mapping URL Pattern from web.xml and make a
note of the complete URL, which will look similar to http://fahost.com:9020/
OBIEEDemo/obieeebroker.

In the OBIEE Administration Development Tool, on the menu, click File | Import
Metadata and this will present you with a wizard with which you can import the
ADF objects into the Physical layer. Select Import Type = OracleADF_HTTP. Create
a New Connection as shown in Figure 12-14. Please note that the URL will be
pointing to the OBIEE Broker Servlet instance that gives you access to your custom
BC4J objects.

The password for username FUSION_APPS_BI_APPID is generated by the
system during the install of Fusion Applications, and your DBA should be able to
provide you with that password. Alternatively, use the wlst command listCred to
obtain this password in free text:

listCred(map="oracle.apps.security", key="FUSION_APPS_BI_APPID-KEY")

Shuttle the desired objects into the Physical layer of OBIEE as shown in
Figure 12-15 and click Finish to complete the import.

FIGURE 12-13. Deployed Web App URL for OBIEE Broker

12-ch12.indd 403 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

404 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 12-14. Connect OBIEE to OBIEE Broker Servlet to import ADF objects.

FIGURE 12-15. Import the Application Module, View Object, and View links to the
physical layer.

12-ch12.indd 404 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 405

As shown in Figure 12-16, you will notice that the complex joins are created
automatically in the Physical layer for the view link that was created in JDeveloper.

After the import of the ADF objects into OBIEE, you can then proceed to build
the Business Model and Mapping layer, followed by the subject area to make the
custom objects available for OTBI reporting.

Joining Two Subject Areas into a Single Report
In BI Answers, there are two ways to create cross–subject area queries:

 1. Creating a single-result set by combining data from multiple subject areas.

 2. Combining multiple result sets using Set Operators (such as Union, Union
All, Intersection, and Difference).

FIGURE 12-16. Complex joins created for view links

12-ch12.indd 405 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

406 Oracle Fusion Applications Development and Extensibility Handbook

Creating a Single-Result-Set Analysis
Use the following steps to create a single-result set by combining data from multiple
subject areas:

 1. Create a new Analysis report, and select the Criteria tab.

 2. Right-click on the desired Subject Area and select Add/Remove Subject Areas.

 3. Select the check box for each needed subject area.

 4. Click OK.

 5. Select the Results tab.

Creating a Multiple-Result-Set Analysis
Use the following steps to combine multiple result sets using set operators, therefore
reporting on data from multiple subject areas:

 1. Create a new Analysis report, and select the Criteria tab.

 2. Right-click on the desired Subject Area and select the desired column.

 3. Click OK.

 4. Repeat Steps 1 and 2 for each subject area and column to use in the cross-
subject area analysis.

 5. Select the Results tab.

Restrictions in Using Cross-Subject Analysis
The following restrictions apply when using cross-subject analysis:

 ■ You can create a query joining only subject areas within your security access.

 ■ A cross–subject area query is limited by the underlying schema relationship
and is only possible through common dimensions shared by the selected
subject areas.

 ■ Degenerate dimensions are not supported. A “degenerate dimension” is a
local dimension that exists only in the selected subject area. If additional
attributes are added, the query does not return correct data.

 ■ Nonconforming dimensions are not supported. “Conforming dimensions”
are those dimensions that exist in all subject areas selected for the query.
Therefore a “nonconforming” dimension is the one that does not exist in all
subject areas selected for the query.

12-ch12.indd 406 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 12: Analytics in Fusion Applications 407

Steps for Including Flexfields in OTBI
The descriptive flexfields allow implementers to add new fields to the user interfaces.
These fields are mapped to database columns, and therefore, often there is a need to
report on the flexfield segments in the OTBI. The registration process of a descriptive
flexfield has a flag named BI Enabled. Also, you can enable the desired segments for
BI by setting the BI Enabled flag for that segment in the descriptive flexfield. Next,
when you deploy the descriptive flexfield, it generates new view objects with the
view attributes that correspond to flexfield segments that are BI Enabled. These
changes to the view objects can be imported into the Physical layer of OBIEE. You
can follow the step-by-step instructions shown in Oracle Support Note 1513020.1
to import descriptive flexfield segments into OBIEE.

The key flexfields also have a BI Enabled flag for their segments. The value sets
attached to the key flexfield segments may have a hierarchy. The values in the value
set hierarchy can be flattened using the task Manage Trees and Tree Versions. The
view objects are generated for the flexfield value set values during the deployment.
These view objects can be imported as dimension tables in OBIEE. For a detailed
step-by-step example for implementing GL Accounting Key Flexfield into OTBI,
please read Oracle Support Note Oracle Fusion Financials OTBI Set-Up - Addendum
- Accounting Role Playing Dimensions (Doc ID 1355653.1). This support note contains
an attached zipped field containing a document named “Release Notes Addendum
AccountKFF_PreReqSetupSteps.docx”. This document gives detailed step-by-step
instructions for importing Accounting key flexfields into OBIEE.

Summary
In this chapter you have learned about the key features of Oracle Transactional
Business Intelligence, which allows the analysis of data in an ad-hoc and secured
manner. At the heart of this technology is the integration of OBIEE with ADF view
objects. Given that the view objects already contain the relevant joins between
different tables, it therefore avoids the need for the report developer to understand in
depth the relationships between various transactional tables. This not only reduces
the time it takes for report development but also ensures that the data security of the
operational systems is replicated in the OTBI Reporting used in Fusion Applications.

12-ch12.indd 407 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

12-ch12.indd 408 11/12/13 12:34 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
13

Enterprise Scheduler
 Jobs and Processing

13-ch13.indd 409 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

410 Oracle Fusion Applications Development and Extensibility Handbook

Oracle Enterprise Scheduler is a new Fusion Middleware component that
provides the capability to run PL/SQL, Java, host scripts, and binary
executables on time-based schedules. In Fusion Applications, Oracle

Enterprise Scheduler takes the role of the Concurrent Processing component,
available in Oracle E-Business Suite, and readers with an Oracle E-Business Suite
background should be able to make direct comparisons between Oracle Enterprise
Scheduler and Concurrent Processing components.

Although the growing need to process and consume information in real time or
near-real time through the event-driven architecture approach is becoming increasingly
prevalent, we still require the capability to run large jobs on a scheduled basis outside
of normal working hours such as the large import of invoices or any other bulk
data transfers that are usually executed outside of normal working hours. Additionally,
the scheduling capabilities of Oracle Enterprise Scheduler could also be used to
complement, or even replace in simple integration scenarios, the use of other tools
from the technology stack such as Oracle SOA, BPM, and so forth.

In this chapter, we’ll touch on the architecture, security, and monitoring aspects
of Oracle Enterprise Scheduler, but most importantly, we’ll go through a practical
example to show us what it takes to create and set up a custom Oracle Enterprise
Scheduler job in Fusion Applications.

Enterprise Scheduler
in Fusion Applications
From now on we’ll refer to Enterprise Scheduler in Fusion Applications as Enterprise
Scheduling Service or ESS for short. We already mentioned that ESS provides the
capability to schedule the running of jobs at some predefined time, and if needed in
some predefined order too. When we say jobs, think of units of work or programs
that need to be performed within certain constraints such as time windows for
execution, system resources like available Java threads on the server, and so forth.

Fusion Applications system administrators and developers usually focus on
somewhat different aspects of system components, and ESS is not an exception.
In the next two sections we’ll provide a summary of available tools for administration
as well as an overview of ESS architecture from the custom ESS job developer’s angle.

Overview of ESS for System Administrators
Whether we think of ESS as an application for batch processing or time-based
scheduling application that provides callbacks to client applications to run their jobs
(programs) as described in Oracle documentation, in technical terms ESS is just a JEE
application named ESSAPP deployed to a WebLogic server as a part of Oracle Fusion
Middleware technology stack. The ear file for ESSAPP JEE application is located at
<middleware_home>/atgpf/ess/archives/ess-app.ear.

13-ch13.indd 410 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 411

ESS Administration Pages
For readers familiar with E-Business Suite, what is markedly different between
Concurrent Processing in E-Business Suite and the ESS component in Fusion
Applications is that the former existed as a single component (Concurrent Manager)
shared across all modules in E-Business Suite while ESS is a part of each product
offering in Fusion Applications, and therefore all products offering WebLogic
domains like FinancialsDomain, CRMDomain, and HCMDomain have ESS
deployed separately in each of them.

For example, to access ESS administration tasks for the Financials product family,
we go to Enterprise Manager for FinancialsDomain via http(s)://<fin_domain_
host>:<fin_domain_port>/em to access ESS administration pages.

The following list, together with corresponding annotations on Figure 13-1,
presents a summary of the functionality available in the current releases of Fusion
Applications:

 1. Admin tasks are accessed by navigating to Scheduling Services from the EM
navigation pane and selecting the ESSAPP component.

 2. Selecting the Scheduling Service menu opens a list of ESS admin options.

 3. The Home Page is used as a starting point for ESS administration and
monitoring. It provides page sections that display information like top
ten long-running jobs (requests), scheduler components, jobs (requests)

FIGURE 13-1. ESS Administration pages in Enterprise Manager for Financials domain

1

5

4

3

2

13-ch13.indd 411 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

412 Oracle Fusion Applications Development and Extensibility Handbook

completed in the last hour, response and load page region, and overall
performance summary.

 4. Job requests can be scheduled, submitted, searched, and viewed from the
Job Requests menu option. Selected requests can be cancelled, held, or
resumed depending on their current status. The full list of ESS job states is
listed in Table 13-1.

 5. Job definitions are accessed by clicking on Job Metadata | Job Definitions
(submenu not shown in Figure 13-1). After we select an application that we
are interested in, the list of all available job definitions is presented, and
clicking any of them will allow us to access the details for that job such as
type of the job (PL/SQL, Java, and so on), display name, path, parameters,
user properties, and so forth. We’ll examine job definitions more closely
when we present a worked example later in this chapter.

ESS jobs can have the states listed in Table 13-1.

Job State Number Job State
1 WAIT
2 READY
3 RUNNING
4 COMPLETED
5 BLOCKED
6 HOLD
7 CANCELLING
8 EXPIRED
9 CANCELLED
10 ERROR
11 WARNING
12 SUCCEEDED
13 PAUSED
14 PENDING_VALIDATION
15 VALIDATION_FAILED
16 SCHEDULE_ENDED
17 FINISHED
18 ERROR_AUTO_RETRY
19 ERROR_MANUAL_RECOVERY

TABLE 13-1. ESS Job States

13-ch13.indd 412 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 413

Request Log and Output Files
Similar to applications in E-Business Suite, jobs can be coded to generate log and
output information and save it in the corresponding log and output files. From both
administration and development perspectives, we need to know where they get
generated and what happens to them at runtime. According to Oracle Support portal
and its article “Where Are the Log and Output Files for ESS Jobs Stored?” [ID
1401648.1], the log files are temporarily created in the following locations:

 ■ RequestFileDirectory/<request_id>/log/

 ■ RequestFileDirectory/<request_id>/out/

The following SQL query helps identify the full paths:

select processgroup,logworkdirectory,outputworkdirectory
from fusion_ora_ess.request_history
where requestid = <request_id>;

The support note also states that once the entire log is written out, it is uploaded to
the Universal Content Management server and deleted from the temporary location.

The question most system administrators would ask is: how is this behavior
controlled and is it possible to change it for development, testing, or other purposes?
The answer to this is that the location of the log and output files is defined by the
FilePersistenceMode and RequestFileDirectory parameters within the connections.
xml file, which can be found in the ess-app.ear/ adf / META-INF directory. Actually,
the modifications to this file must not be done manually but through the System
MBean Browser functionality in Enterprise Manager as shown in Figure 13-2. Here
is how to do it:

 1. Navigate to WebLogic Domain and select the Oracle Enterprise Scheduler
server.

 2. From the WebLogic Server menu, select System MBean Browser and expand
Application Defined MBeans.

 3. Expand oracle.adf.share.connections as shown in Figure 13-2.

13-ch13.indd 413 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

414 Oracle Fusion Applications Development and Extensibility Handbook

Depending on the FilePersistenceMode parameter value at runtime, the behavior
that affects the location of the log and output files is as follows:

 ■ Value set to content When set to content, the files will be stored as
an attachment in Universal Content Management (UCM), in which case
they are removed from the file system and uploaded to the UCM server
under the default folder contribution Folders/Attachment/ESS_REQUEST_
HISTORY/<request_id>, where <request_id> is a unique job request
identifier.

 ■ Value set to file If parameter is set to file, the value of the
RequestFileDirectory parameter will determine the full path of the job
request’s log and output directory on the file system.

FIGURE 13-2. FilePersistenceMode and RequestFileDirectory parameters in Enterprise
Manager

13-ch13.indd 414 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 415

NOTE
Do not confuse ESS Server Logging with Job
Request log and output files. The ESS Server Logging
configuration is defined by navigating to the ess_
server1 menu from the expanded WebLogic Domain
tree in the navigation pane and selecting Logs | Log
Configuration. The Log Configuration page that
opens allows you to configure different log levels
for various loggers such as oracle.apps.fnd.applcp,
oracle.as.ess, oracle.as.scheduler.*, oracle.ess.*,
and others. The ESSAPP log files can be accessed
from the Scheduling Service menu for ESSAPP and
selecting Logs | View Log Messages.

Later in the chapter we’ll discuss what APIs are available for developers to
produce and populate output and log files.

ESS Database Schema FUSION_ORA_ESS
A schema in Oracle Database where ESS tables and packages reside is called
FUSION_ORA_ESS. My Oracle Support portal has a useful note (ID 1347299.1),
which lists ESS tables along with their description as shown in Table 13-2.

ESS Table Description
ESS_CONFIG Table for general ESS configuration parameters for the ESS schema.
REQUEST_HISTORY ESS request history table.
REQUEST_METADATA ESS runtime metadata store.
JOB_INCOMPATIBILITY Incompatibilities referenced by a job/jobset definition.
INCOMPATIBILITY_LOCK Incompatibility lock table.
REQUEST_
INCOMPATIBILITY

Incompatibilities used (acquired/released) during lifetime of a
request.

REQUEST_PROPERTY Application-specified request parameters.
May also contain scoped system parameters for jobsets.

REQUEST_CONSTRAINT Request parameters that have been flagged as read-only.
EVENT_FILTER Event filter information used for trigger-based requests.
REQUEST_SEC_PRINCIPAL Table for security principals used for execution of a request.

This information is used by CP for PL/SQL runAs and possibly
other CP tasks.

REQUEST_CP Table for storing miscellaneous information used by CP.

TABLE 13-2. ESS Database Tables (Continued)

13-ch13.indd 415 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

416 Oracle Fusion Applications Development and Extensibility Handbook

ESS Table Description
WAIT_QUEUE ESS wait queue.
ESS_COORD Table for basic coordination between ESS instances.
ESS_APP_REGISTRATION Table that lists applications with active endpoints in a given

instance.
CONFIGURED_BINDINGS Work assignment to processor bindings for all ESS instances using

this schema. The bindings are managed by EM.
OPERATIVE_BINDINGS Bindings that are in effect for all ESS instances using this schema.

If an instance is down, it will not have any rows in this table.
For each instance, this table provides a cache of the configured
bindings it last read, plus state on those bindings.

ASYNC_THROTTLE Each type of async job (plsql, async java) can be limited for a
(work assignment, workshift) within a process group.
This table contains the limit and current allocation for work
assignments that are so limited.
The limit is the maximum number of jobs that can be executing,
meaning within initialize to finalize stages.
A limit of –1 means no limit.
The allocation is the number of jobs that are currently executing.

CHANGED_WA_
METADATA

Contains, for each instance, metadata IDs of work assignment
metadata that have changed and may need to be reloaded.

ESS_WS_ASYNC_INFO Table that stores information used for Web service asynchronous
callbacks.

SCRATCH_QUERY_
PRINCIPAL

Table used for security principal information for query request
operation.

COMMAND_WORK Table for async commands/operations issued from PL/SQL
interface.

WORK_UNITS Used to track work, usually relating to request processing. It is
the cornerstone of ESS processing. Work is checked out from this
table, stages are tracked for optimal recovery, and so on.

EVENT_WORK ESS events table.
NOTIFY_REGISTRATION Notification support for work units, events.
FAILED_EXECUTION_
HISTORY

ESS failed execution history table.
Contains history of failed past execution attempts for requests that
are being or have been retried (automatically or manually).
Each row contains information copied from request_history before
the request_history row is reset for retry.
Note that dispatcher and processor are the servername, not the
instance ID.

RECOVERY_DELETE Stores information for manual recovery scenarios when deleting
instances, for example, removal of an entire process group.

TABLE 13-2. ESS Database Tables

13-ch13.indd 416 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 417

The information stored in ESS tables is particularly useful for troubleshooting
purposes; for example, the REQUEST_HISTORY table allow us to query all available
data for a particular job that was run or is still running.

Overview of ESS for Fusion Applications Developers
The ESS administration pages discussed in the previous sections help system
administrators and developers alike manage the lifecycle of a job definition, such
as scheduling, distribution, and monitoring. In the sections that follow we are going
to introduce the ESS architecture and development aspects of the job definition along
with tools and techniques available to Fusion Applications developers in order to
create custom ESS jobs.

Oracle Enterprise Scheduler Architecture Overview
The product documentation defines Oracle Enterprise Scheduler as an application
that provides time- and schedule-based callbacks to other applications to run their
jobs, which means that Oracle Enterprise Scheduler is not aware of the details for a
particular job request; in other words, Oracle Enterprise Scheduler is decoupled
from an application that schedules and runs the job request. In ESS, an application
that submits the job requests is called a client application.

Although Oracle Enterprise Scheduler does not provide a UI for the end user to
interact with it directly, in Fusion Applications the end user normally interacts with
the prebuilt applications that are part of the product offering. The names of the
applications that launch job requests depend on which product is used:
FinancialsEssApp, HcmEssApp, CrmEssApp, ProjectFinancialsEssApp, and
ProcurementEssApp are some examples.

13-ch13.indd 417 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

418 Oracle Fusion Applications Development and Extensibility Handbook

NOTE
In Fusion Applications, to define custom ESS jobs
and their associated metadata such as job type, Java
executable name, PL/SQL procedure name, and others,
we can use Manage Custom Enterprise Scheduler
Jobs taskflow from the Setup and Maintenance menu
available to users with administrator Functional
Setup Manager privileges. We can also use the ESS
administration page in Enterprise Manager as shown
in Figure 13-1 (Job Metadata menu option). Although
the Oracle Fusion Applications Developer’s Guide
for Oracle Enterprise Scheduler suggests using
Oracle JDeveloper to create an Oracle Enterprise
Scheduler executable class and Oracle Enterprise
Scheduler-specific metadata for job executables, we
actually use the existing job hosting applications such
as FinancialsEss and EarHcmEss and an existing job
submission application without the need to build the
client UI from scratch. This will be demonstrated in a
worked example later in the chapter.

Figure 13-3 shows system interactions within individual ESS components:

 1. User submits a request from a Web browser using client application.

 2. Client application sends the request to Enterprise Scheduler to schedule
the job.

 3. Enterprise Scheduler reads the metadata for the request.

 4. Enterprise Scheduler puts the request in a wait queue (table) in FUSION_
ORA_ESS schema, along with the metadata.

 5. At the scheduled time, Enterprise Scheduler sends a callback message to the
client application with all the request parameters and metadata captured at
the time of the job request submission.

 6. Client application performs the jobs and returns a status.

 7. Enterprise Scheduler updates the history with the job request status in the
REQUEST_HISTORY table.

It is possible to have Client Application and Enterprise Scheduler in a split
configuration where submitting and hosting application reside on different
WebLogic servers.

13-ch13.indd 418 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 419

ESS Metadata Services
Metadata Services, also called MDS, is used in almost all components of Fusion
Middleware, and ESS is no exception. ESS MDS is used to store the application level
of metadata, such as job type, job definition, job set, and other application-level
metadata. Additionally, MDS also stores global metadata such as schedules, work
shifts, and work assignments.

The data in MDS is organized hierarchically, similar to file directory structures
on Windows or Linux operating systems. For example, the custom job definition
XxInterfaceCount that we define in our example presented in the next section is
stored under the following path in MDS: /oracle/apps/ess/custom/ledger/interface/
Jobs and has the following content:

<?xml version="1.0" encoding="UTF-8"?>

<job-definition xmlns="http://xmlns.oracle.com/scheduler"

 job-type="/oracle/as/ess/ext/JobType/PlsqlJobType.xml"

 name="XxInterfaceCount"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<description>Demo: Custom PL/SQL ESS job</description>

<display-name>XX Interface Count</display-name>

<parameter-list>

 <parameter name="SYS_procedureName" data-type="string">XxCustomLedger

.InterfaceCount</parameter>

 <parameter name="SYS_priority" data-type="integer"/>

 <parameter name="jobDefinitionApplication" data-type="string">CustomGL</parameter>

 <parameter name="EXT_PortletContainerWebModule" data-type="string">Ledger</

parameter>

FIGURE 13-3. ESS components

C
lie

nt
 A

pp
lic

at
io

n

En
te

rp
ri

se
 S

ch
ed

ul
er

3. Read Job
Metadata

4. Put request in
wait queue table

Desktop WebLogic Server Fusion Apps DB

1. Request
submitted

ESS Metadata
(MDS)

Scheduler Data
(FUSION_ORA_ESS)

7. Update
request

history table

2. Send to
Scheduler

5. Callback
client app

6. Return
job status

13-ch13.indd 419 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

420 Oracle Fusion Applications Development and Extensibility Handbook

 <parameter name="SYS_application" data-type="string"/>

 <parameter name="SYS_retries" data-type="integer"/>

 <parameter name="srsFlag" data-type="string">Y</parameter>

 <parameter name="parametersVO" data-type="string">sessiondef.oracle.apps.atk.

essMeta.XxInterfaceCountAtkEssParamaterViewDef</parameter>

 <parameter name="SYS_effectiveApplication" data-type="string">FinancialsEss</

parameter>

 <parameter name="SYS_product" data-type="string">CustomGL</parameter>

 <parameter name="SYS_requestCategory" data-type="string"/>

 <parameter name="SYS_request_timeout" data-type="integer"/>

 <parameter name="ParameterTaskflow" data-type="string"/>

 <parameter name="SYS_allowMultPending" data-type="boolean">false</parameter>

 <parameter name="Program.FMG" data-type="string">L.XML,O.PDF</parameter>

 <parameter name="defaultOutputExtension" data-type="string">txt</parameter>

 <parameter name="numberOfArgs" data-type="string">1</parameter>

</parameter-list>

</job-definition>

TIP
The MDS repository can be exported from Oracle
Database into a file system directory on a local
machine where a browser is running. For example,
to export MDS from FinancialsEssApp log in to
Enterprise Manager for Financials Domain, expand
the Fusion Applications folder under the root Oracle
Fusion Financials node, select FinancialsEssApp
(ess_server1), click the Fusion J2EE Application
menu button under FinancialsEssApp, and select
MDS Configuration Option. From here you can
export MDS that belongs to the globalEss partition
from the database in the flat files.

We’ll shortly discuss how MDS namespaces and paths are used to secure ESS
resources and allow only users with the correct privileges to be able to define and
run ESS jobs.

Custom ESS Job Worked Example
The best way to get familiar with the concepts relating to creation and configuration
of custom ESS jobs is to go through a hands-on example. Fusion Applications
support the following types of job types and their corresponding programs or
executables:

13-ch13.indd 420 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 421

 ■ SQL Loader programs

 ■ SQL Plus scripts

 ■ PL/SQL procedures

 ■ Perl scripts

 ■ Java classes

 ■ Host programs (shell scripts)

 ■ C programs (C executables)

 ■ BIP (Business Intelligence Publisher Reports)

In our step-by-step example we are going to look at how to set up and configure
a simple custom PL/SQL job. Before we begin our custom job definition steps, we’ll
create a custom application and assign correct access privileges to the users.

Creating a Custom Application
A custom application can be added by accessing the Setup and Maintenance page
(Navigator | Setup and Maintenance) and searching for the Manage Taxonomy
Hierarchy task.

In the Manage Taxonomy Hierarchy task page, expand all the nodes, select
Oracle Fusion (1), and click on the Create Child Module button (2) as indicated in
Figure 13-4.

In the Child Module Details region, set the Product Line field to Fusion, Module
Type to Family, Module Name to Custom, Alternative ID to some unique number
such as 10001 in our case, and set Usage Type to Installed (see Figure 13-5). Click
the Save button to save a newly added record into the database.

After saving the Custom family, the Manage Taxonomy Hierarchy page should
refresh and the newly added Custom family will appear under Oracle Fusion
hierarchy. Now we can click on our Custom module and add a custom application
by selecting it and clicking the Create New Module button. This will open a page
that will allow us to populate values and create XX Custom Ledger App as shown in
Figure 13-6 after saving the record to the database.

We now should be able to specify XX Custom Ledger App as an application
when defining our custom ESS jobs.

13-ch13.indd 421 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

422 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 13-5. Create a Custom family in Taxonomy Hierarchy

FIGURE 13-4. Manage Taxonomy Hierarchy task page

1. Expand nodes
and select
Oracle Fusion.

2. Click the Create Child
Module button to create a
new family module.

13-ch13.indd 422 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 423

NOTE
The process of creating custom applications in
Fusion Applications is not fully documented in user
manuals at the time of writing of this book (Release
11.1.6). We suggest consulting with an Oracle
Support representative for further details, as we
understand that the product documentation is going
to be updated with more details.

For more details on application taxonomy, we suggest that you read the Oracle
Fusion Applications Product Information Management Implementation Guide
available from the product documentation page on OTN.

FIGURE 13-6. Creating a custom application in Taxonomy Hierarchy

13-ch13.indd 423 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

424 Oracle Fusion Applications Development and Extensibility Handbook

Configuring Metadata Security
for a Custom ESS Job
In Chapter 3, we discussed how to create a super user with admin privileges and we
are going to use the same XX_FA_IMPLEMENTOR user to create a custom ESS job.

Our XX_FA_IMPLEMENTOR user has Application Implementation Consultant,
Application Implementation Manager, and IT Security Manager among other roles
assigned to it. This should generally be sufficient for developers to be able to define
a custom ESS job and access Functional Setup Manager tasks. In addition to
Functional Setup Manager tasks, we also need an access to Authorization Policy
Manager (APM), which is a graphical interface tool to manage application
authorization and access policies, as discussed in Chapter 3.

Metadata Services Namespace for Custom ESS Jobs
Data in Metadata Services (MDS) is organized in hierarchical fashion similar to Unix
and Windows file systems. Instead of directories, MDS uses namespaces or package
names to locate a file. ESS stores its metadata under the globalEss partition with
namespace /oracle/apps/ess and each application family and offering have their
own namespace such as /oracle/apps/ess/hcm for Human Capital Management.

Custom ESS jobs should be defined under the /oracle/app/ess/custom path. How
we organize the path under /oracle/app/ess/custom is entirely up to us and should
be part of the build standards that all developers adhere to in a particular organization.
For example, we could have a parent hierarchy /oracle/app/ess/custom /generalLedger/
interface under which we have custom ESS jobs that relate to General Ledger
interfaces in Financials. The best practices have still not emerged in terms of naming
conventions, but the important thing is that each organization must adopt its own
standards and stick to them.

In our example, we’ll make sure that Application Implementation Manager has
correct privileges and access to /oracle/app/ess/custom/* hierarchy:

 1. Log in to Authorization Policy Manager (APM) via http(s)://<common_
domain_host>:<common_domain_port>/apm url. Once logged in, select an
application, which in our exercise is called fscm and then click the New link
under the Resources heading as shown in Figure 13-7 (1).

 When the Untitled tab opens, choose ESSMetadataResourceType and enter
the following values as shown in Figure 13-7:

 ■ Display Name oracle.apps.ess.custom.*

 ■ Name oracle.apps.ess.custom.*

 ■ Description Path for custom jobs

 Click Save to persist the record in the database and close the tab.

13-ch13.indd 424 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 425

NOTE
We used a wildcard “*” to define a resource for all
nodes under /oracle/apps/ess/custom hierarchy.

 2. Go back to the main screen, make sure that the fscm application is selected,
and click the Search link under the Resources heading. This will open the
Search Resources tab where we again select ESSMetadataResourceType from
the drop-down list and search for the resource that has a name that starts
with oracle.apps.ess as shown in Figure 13-7 (2). Hopefully our resource
oracle.apps.ess.custom* that we created in the previous step will show up in
the results table.

 3. We now select the row with the oracle.apps.ess.custom* resource and click
the Create Policy button as shown in Figure 13-7 (3). The new tab will now
open, in which we click on the Add Principal button, which will open a
search pop-up to search for users, external roles, and application roles.
Search for Application Implementation Manager under the External
Roles tab.

 4. Enable Update, Delete, Create, Execute, and Read actions as demonstrated
in Figure 13-8.

FIGURE 13-7. Defining a resource for a custom ESS job

1

2

3

13-ch13.indd 425 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

426 Oracle Fusion Applications Development and Extensibility Handbook

Remember that we have already assigned the Application Implementation
Manager role to our XX_FA_IMPLEMENTOR user and now we are ready to create a
custom ESS job as that user.

Creating a Custom PL/SQL ESS Job
The steps to create a custom PL/SQL job broadly consist of creating the PL/SQL
procedure in Oracle Database where the ESS schema resides, that is, the Fusion
Application database, and creating a custom PL/SQL job definition using Functional
Setup Manager tasks.

Note that the current Oracle Fusion Applications Developer’s Guide for Oracle
Enterprise Scheduler states that for PL/SQL jobs we have to do the following:

 ■ Create or obtain the PL/SQL stored procedure that you want to use with
Oracle Enterprise Scheduler.

 ■ Load the PL/SQL stored procedure in the Oracle Database, grant the
required permissions, and perform other required DBA tasks.

 ■ Use Oracle JDeveloper to create job type and job definition objects and
store these objects with the Oracle Enterprise Scheduler application
metadata.

 ■ Use Oracle JDeveloper to create an application with Oracle Enterprise
Scheduler APIs that runs and submits a PL/SQL stored procedure.

FIGURE 13-8. Enabling and granting required actions for custom ESS jobs

13-ch13.indd 426 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 427

However, the good news is that in Fusion Applications we don’t have to use
JDeveloper to create job type and job definition objects or create an application that
runs and submits the PL/SQL stored procedure. Instead, we can use out-of-the-box
functionality as demonstrated in our next example.

Step 1: Create a PL/SQL Stored Procedure
For the purposes of this exercise we’ll create a simple PL/SQL procedure in Fusion
Applications FUSION database schema with the correct signature and one parameter
ledgerId:

create or replace package XxCustomLedger AUTHID Current_USER AS

Procedure InterfaceCount (
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 ledgerId in number);
END XxCustomLedger;
/
create or replace package body XxCustomLedger as

procedure InterfaceCount (
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 ledgerId in number)
is
 v_intCount number;
 begin
 fnd_file.put_line(fnd_file.log, 'PL/SQL Procedure InterfaceCount running.');
 fnd_file.put_line(fnd_file.log, 'User Name: ' || fnd_global.user_name);
 select count(*) into v_intCount
 from gl_interface;
 fnd_file.put_line(fnd_file.output, ' Job Request Id: ' || fnd_job.request_id);
 fnd_file.put_line(fnd_file.output, ' |-----------------------------------|');
 fnd_file.put_line(fnd_file.output, ' GL Interface Row Count: ' || v_intCount);
 fnd_file.put_line(fnd_file.output, ' |-----------------------------------|');
 errbuf := fnd_message.get_string ('fnd', 'Normal Completion');
 retcode := 0;
 end InterfaceCount;
end XxCustomLedger;
/

NOTE
Using the FUSION database schema for custom ESS
jobs is consistent with recommendations provided
in the Oracle Fusion Applications Developer’s
Guide for Oracle Enterprise Scheduler (Part Number
E10142-01).

13-ch13.indd 427 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

428 Oracle Fusion Applications Development and Extensibility Handbook

The procedure InterfaceCount, which is contained inside the XxCustomLedger
PL/SQL package, simply counts a number of rows in the GL_INTERFACE table and
uses FND_FILE.PUT_LINE, FND_FILE.OUTPUT, and FND_FILE.LOG to write text to
the output and log files. The mandatory parameters errbuf (error buffer) and retcode
(return code) must exists in the procedure signature and retcode should return 0, 1,
2, or 3 values, representing SUCCESS, WARNING, FAILURE, or BUSINESS ERROR
statuses.

After creating the procedure, we need to assign a correct grant to it by issuing
the following statement:

grant execute on XxCustomLedger to fusion_apps_execute;
/

Step 2: Access Task to Manage Custom ESS Jobs
We log in as XX_FA_IMPLEMENTOR, go to the Setup and Maintenance (Navigator |
Setup and Maintenance) page, and search for Manage Custom Enterprise Scheduler
Jobs for Ledger and Related Applications task. We select this task and click the Go
to Task button, which opens the task in which we manage job definitions as shown
in Figure 13-9.

FIGURE 13-9. Task to manage custom ESS jobs

Click the Create button to define a custom job.

13-ch13.indd 428 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 429

We chose the Manage Custom Enterprise Scheduler Jobs for Ledger task for this
exercise, but you can also use other tasks to manage custom ESS jobs.

Step 3: Define a Custom PL/SQL Job
In the Manage Custom Enterprise Scheduler Jobs for Ledger task, we click the Create
button as indicated in Figure 13-9 and populate the Job Definition page region with
the following values:

 ■ Display Name Custom Interface Count

 ■ Name XxInterfaceCount

 ■ Path /oracle/apps/ess/custom/ledger/interface

 ■ Application XX Custom Ledger App

 ■ Description Demo: Custom PL/SQL ESS job

 ■ Job Application Name FinancialsEss

 ■ Job Type PlsqlJobType

 ■ Procedure Name XxCustomLedger.InterfaceCount

 ■ Default Output Format TXT

We also check the Enable Submission from Enterprise Manager and Enable
Submission from Scheduled Processes boxes. This will enable us to submit our job
from both Enterprise Manager and Scheduled Processes central ESS UI app pages.

For PL/SQL programs we must define the numberOfArgs property under the User
Properties tab (see Figure 13-10). This property identifies the number of job
submission arguments excluding the mandatory arguments errbuf and retcode.

FIGURE 13-10. Mandatory Number of Arguments (numberOfArgs) property for
PL/SQL jobs

13-ch13.indd 429 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

430 Oracle Fusion Applications Development and Extensibility Handbook

Lastly we define our arguments, which in our case is just one: Ledger Id. We
click the XxInterfaceCount: Parameters tab and click the Create button, which in
turn will allow us to populate the Create (Edit) Parameter pop-up screen as shown in
Figure 13-11.

The values we enter in our example are

 ■ Parameter Prompt LedgerId

 ■ Data Type Number

 ■ Page Element Text Box

Save and close the Edit Parameter pop-up screen.

Step 4: Scheduling and Running an ESS Custom Job
We are going to use an ESS Central UI App deployed to the Common Domain to
search and schedule our custom job by using the following navigation path:
Navigator | Tools | Scheduled Processes. This will launch the Scheduled Processes
page (Figure 13-12) where we:

 1. Click the Schedule New Process button.

 2. Search for our XX Interface Count Custom PL/SQL job.

We click the OK button to select it, and this in turn launches the Process Details
pop-up screen (not shown) where we populate parameters (LedgerId in our case)
and click the Submit button to run our PL/SQL program.

FIGURE 13-11. Creating or editing job parameters

13-ch13.indd 430 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 13: Enterprise Scheduler Jobs and Processing 431

An Information dialog box should pop up with the Request Number informing
us about successful submission after which we can search for that request in the
Scheduled Processes ESS Central UI App. Our request has completed successfully
and has produced both log and output files, which are available as attachments as
marked in Figure 13-13.

The data security is not implemented in this example; for more details on that
topic, read Function and Data Security in Fusion Applications (Chapter 3), which
discusses how security works in Fusion Applications including Oracle Fusion Data
Security.

FIGURE 13-12. Searching for jobs in ESS Central UI app

1. Click Schedule New Process
to launch the search pop-up.

2. Search for XX Interface Count
Custom PL/SQL ESS job.

13-ch13.indd 431 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

432 Oracle Fusion Applications Development and Extensibility Handbook

Summary
In this chapter we have introduced the basics of Enterprise Scheduler processing in
Fusion Applications and its architecture components.

We have also:

 ■ Learned how to create a custom application in Taxonomy Hierarchy

 ■ Learned how to configure metadata security for custom ESS jobs

 ■ Explained how MDS namespaces work for custom ESS jobs

 ■ Learned how to schedule and monitor ESS jobs

More importantly, we have gone through the worked example of creating a
custom PL/SQL ESS job, and we should now feel more comfortable to explore other
types of ESS jobs available in Fusion Applications.

FIGURE 13-13. Monitoring ESS jobs (processes)

Log File Output File

13-ch13.indd 432 11/12/13 12:36 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
14

Custom Look and Feel
with ADF Skinning

14-ch14.indd 433 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

434 Oracle Fusion Applications Development and Extensibility Handbook

An enterprise application quite often requires having corporate branding applied
to it when deployed along other IT systems in an organization. Even more
 important is the capability to customize the default out-of-the-box user

interface (UI) appearance for externally facing applications, which are exposed
outside the perimeter of the corporate network.

Oracle Fusion Applications offer a wide variety of approaches to change the
default application look and feel. As we discovered in other parts in this book, you
can use the Page Composer tool to change properties that control the appearance
and behavior of UI page components. Oracle JDeveloper can be used to customize
the UI Shell template; change and customize home page, preferences, and Navigator
menus in Oracle Applications; and the text can be customized by overriding the
resource bundle.

In this chapter, we’ll cover a specific technique of application branding and
styling in Oracle Fusion Applications commonly referred to as skinning. In fact, this
technique is made available through Oracle Application Development Framework
(ADF) and from now on we’ll refer to it as ADF skinning. In the next few sections,
we’ll provide a brief introduction to the ADF skinning framework, explain how it
relates to Cascading Style Sheets (CSS), and provide step-by-step instructions on
how to create and deploy a custom skin in Oracle Fusion Applications.

Introduction to ADF Skinning
Readers who are familiar with Oracle E-Business Suite will recognize that Oracle
Applications (OA) Framework, the presentation layer in releases R11i and R12, was
built on Oracle’s now-deprecated UIX (User Interface XML) technology. Oracle UIX
enabled developers to create applications with a consistent look and feel; it also
allowed customers to use its look-and-feel customization framework, often referred
to as CLAF (Custom Look and Feel), to change the appearance of Oracle’s Web-based
products by applying UIX Custom Style Sheets and UIX Custom Icons, and creating
UIX Custom Renderers for ultimate control over the look of UI.

In the current version of Oracle ADF, or more specifically ADF Faces Rich Client
(often called just ADF Faces) in JDeveloper 11g, the skinning framework is still
largely based on the UIX CLAF framework, although it is considerably enhanced in
the present day. ADF Faces is a set of JavaServer Faces (JSF) components that provide
rich functionality to browser-based applications, client- and server-side programming
models, and among numerous other features, it offers the skinning feature through a
rich JSF component render kit. The component renderers are Java classes that handle
HTML content and corresponding client-side components, and also expose
component-style selectors used in skinning.

14-ch14.indd 434 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 435

NOTE
ADF component-style selectors should not be
confused with the standard W3C-defined selectors.
In the ADF skinning framework, we use component
selectors to directly transform the appearance of a
specific component rather than rendered HTML,
which will ultimately also change but indirectly as
a consequence of applying skin through ADF Faces
component-style selectors. We’ll expand on this
further in the sections that follow.

Since ADF skinning is based on CSS, in the next sections we’ll provide a very
concise summary of the CSS style sheet language and how it relates to ADF Faces.

A Very Brief Overview of
Cascading Style Sheets (CSS)
The goal of CSS is to provide a simple, flexible, and declarative language for adding
style to Web documents. HTML and XHTML are the most common types of
documents to which CSS gets applied, although it can easily be applied to XML and
other document types. Web documents such as HTML Web pages contain elements
that are the basis of document structure, and styles define how to display HTML
elements. Often, the elements in HTML play a part in the presentation of a document
and CSS allows us to separate its content from presentation.

Consider the following HTML markup:

<p>This is a paragraph</p>

To style the text “This is a paragraph” and display it in red and in a certain size,
the tag and its attributes color and size are mixed with the actual
content of the HTML markup. This approach created problems for Web developers
and administrators of large Web sites when such tags were introduced in HTML.

The World Wide Web Consortium (W3C) came up with CSS to resolve this
problem by introducing style sheets, which consist of rules in CSS syntax. Here is an
example of such a CSS rule:

p {
 color:red;
 font-size:8px;
 }

14-ch14.indd 435 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

436 Oracle Fusion Applications Development and Extensibility Handbook

The main parts of a CSS rule are

 ■ Selector Element to which style applies, such as p for paragraph in our
example.

 ■ Declaration Property and value pairs such as color:red and font-
size:8px.

The following snippet demonstrates how to set HTML element style:

<html>
 <head>
 <style>
 p {
 color:red;
 font-size:8px;
 }
 </style>
 </head>
<body>
 <p>This is a styled paragraph.</p>
</body>
</html>

In CSS it is quite common to set styles to user-defined selectors called id and class.
With the id selector we define a style for a single document element as

shown next:

<html>
 <head>
 <style>
 #mypar
 {
 color:red;
 font-size:8px;
 }
 </style>
 </head>
<body>
 <p id="mypar">This is a styled paragraph</p>
 <p>This paragraph is not affected by any style.</p>
</body>
</html>

The styling rule applied to the HTML element with attribute id="mypar" and other
paragraph elements were not affected by the rule.

14-ch14.indd 436 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 437

Similarly, we use the class selector to define a style for a group of document
elements as shown next:

<html>
 <head>
 <style>
 .smallred
 {
 color:red;
 font-size:8px;
 }
 </style>
 </head>
<body>
 <h1 class="smallred">This is a styled header</h1>
 <p class="smallred">This is a styled paragraph</p>
</body>
</html>

In the previous example, all elements with class="smallred" will have a
style applied to them. Additionally, we can also specify what particular elements are
affected by the style:

h1.smallred { color:red; font-size:8px; }

We have only scratched the surface, and there are numerous rules on how
document elements can be styled, but this is outside the scope of this book and we
mention it here only as an introduction to ADF skinning.

Lastly, we should mention that there are three ways of inserting a style sheet
and styles:

 ■ Inline styles Applied by using the style attribute within the HTML tag
itself. Inline styles mix together content and presentation; therefore, they are
not considered to be the best practice and they indeed defeat the purpose
of CSS to some degree.

 ■ Internal style sheet Defined in the HEAD section of an HTML document
inside the <style> tag, as we did in our previous examples. This is generally
used only for documents that have a unique and specific style.

 ■ External style sheet Defined when styling applies to the whole Web site,
application, or multiple documents. HTML pages are linked to the external
style sheet using the <link> tag inside the HEAD section.

14-ch14.indd 437 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

438 Oracle Fusion Applications Development and Extensibility Handbook

 Here is an example of how an external style sheet example.css is linked to
an HTML document:

<head><link rel="stylesheet" type="text/css" href="example.css"></head>

The CSS specification from W3C specifies the order of precedence if rules are
defined at multiple levels for an element. The details can be found at www.w3.org/
TR/CSS21/cascade.html#cascading-order, but generally the cascading order of
precedence is such that an inline style would override a style inside the document’s
HEAD tag, external, and browser default styles. Likewise, the external style has
higher precedence than browser default values. All the other rules, exceptions, and
in-depth details can be found at www.w3.org.

About ADF Faces Skinning
ADF is based on JSF architecture and, similar to component renderers in JSF, ADF
renderer Java classes take care of how components are displayed on a specific device.
The key difference between working with standard CSS selectors as described in the
previous section and the style selectors in ADF is that the latter use ADF Faces
component renderers to expose component-specific selectors, and this is what we
work with when skinning ADF-based applications. In other words, rather than
operating on HTML output directly such as h1.smallred, we use ADF component
selectors like af|calendar, which is the selector on the root DOM element of the
calendar ADF Faces component.

Oracle ADF documentation defines skins as style sheets based on CSS 3.0 syntax
that are specified in one place for an entire application. Skinning allows developers
and designers to change the styles, icons, properties, and text of ADF Faces
components, which means that a skin consists of a CSS file, images, and localized
strings. All ADF applications including Oracle Fusion Applications have a default
skin; when we decide to introduce a custom skin for an application, we must select
a parent skin that we are extending so that components that are not affected by our
style definitions can inherit styles from the parent skin.

NOTE
The skin document in the current releases of
Oracle ADF uses CSS 3 syntax only for styling
rules for the ADF Faces components, which at run
time get converted into a CSS 2 style document
by the skinning framework. It is the generated
CSS 2 document that is added to the final HTML
document, which is rendered in the end user’s
browser.

14-ch14.indd 438 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 439

Skin Keys and Selectors
Oracle documentation related to skinning, such as Oracle Fusion Middleware Tag
Reference for Oracle ADF Faces Skin Selectors, documents available component
selectors and skin keys. These terms are used interchangeably, but the most
important thing to understand is that in order to be successful in styling an ADF
application, one has to be very familiar with the available skin selectors. For
example, to style the ADF Input Text Component, we can use the following selector:

af|inputText{color:green}

Generally, skin keys begin with af| followed by the component name we want
to skin, and optionally can also be followed by a specific part of the component we
want to skin, such as label in the following example:

af|inputText::label{color:orange}

Some ADF Faces component selectors also have pseudo-classes similar to those in
HTML such as :active, :disabled, :selected:, :hover, while other
components have ADF Faces–specific pseudo-classes. Apart from pseudo-classes,
ADF Faces allow access to the component-specific areas via pseudo-elements.

There are three main types of selectors available in ADF Faces, and a summary
of their role in the skinning framework is as follows:

 ■ Style classes Used to create custom global selectors, and can also be
referenced in the styleClass component attribute. They are usually
prebuilt, such as .AboutPageText, which comes with the Application
Core extension in Fusion Applications. If referenced in the styleClass
attribute, the style class rules are applied to the component root element.

 ■ Global selectors Affect multiple components at the same time. In ADF
Faces component selectors implement global selector names, which allows
us to reuse the styles in our custom skin rather than repeating their definition
for each component.

 ■ Component selectors Affect a single type of a component because in
the ADF Faces skinning framework, all components implement the skin
component selectors af|<component name>, where <component
name> is the name of the component, such as inputText.

If you are new to skinning, working with ADF selectors can appear to be a bit
difficult to digest initially, but the good news is that apart from the official product
documentation, there are lots of resources out there, such as the Oracle Fusion
Developer Guide from Oracle Press, that cover this subject in some detail.

14-ch14.indd 439 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

440 Oracle Fusion Applications Development and Extensibility Handbook

Skinning Tools and Important Resources
In comparison to Custom Look And Feel (CLAF) skinning in earlier releases of ADF
10g based on User Interface XML (UIX) and E-Business Suite 11i and R12, Oracle
has made it much easier for developers to create and design their own skins in ADF
11g, and in the case of Oracle Fusion Applications, to extend and customize the
default skin that is shipped with applications. While previous releases had little
documentation and publicly available resources related to skinning, Oracle Fusion
Middleware documentation covers this topic in some detail now, and on top of it, a
tool has been provided to help customize existing or create brand new skins. In the
next sections, we’ll take a look at this tool as well as other resources available to
skin developers to help them change the appearance of Fusion Applications.

ADF Skin Editor and an Extension
for Fusion Applications
The most important tool that offers skin development support is the Skin Editor.
While the recent releases of JDeveloper 11g Release 2 have an built-in skin editor,
the current release of Oracle Fusion Applications 11g Release 6 (11.1.6) at the time
of writing this book is built with JDeveloper 11.1.1.6, which doesn’t have an built-in
skin editor. To use the skin editor in this release of Fusion Applications, use a stand-
alone skin editor available for download from the ADF downloads page at Oracle
Technology Network (OTN) at www.oracle.com/technetwork/developer-tools/adf/
downloads/index.html.

Installing the stand-alone skin editor is very simple; just follow the simple
instructions provided at the same download page. For Fusion Applications skinning,
we also need to update the skin editor with the Fusion Applications Skin Extension
Bundle by going to Help | Check for Updates in the Editors menu. In the Updates
source screen, check the Official Oracle Extensions and Updates tick box, click the
Next button, and search for the word skin as demonstrated in the following
illustration.

14-ch14.indd 440 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 441

Install the latest release of Oracle ApplCore Skin Update extension and restart the
skin editor.

NOTE
The product documentation at present doesn’t
appear consistent with regard to the extension
name. It refers to Fusion Applications Skin Extension
Bundle rather than Oracle ApplCore Skin Update.
We suspect the name for Fusion Applications Skin
Extension could change in future updates.

Now we are ready to start creating custom skins for Fusion Applications, but
before we turn our attention to it, let’s have a look at other resources available to us.

Reference Documentation,
Browser Tools, and Other Resources
In the next few sections we are going to list some of the most important publicly
available resources that provide a great deal of support to developers when skinning
Oracle Fusion Applications.

14-ch14.indd 441 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

442 Oracle Fusion Applications Development and Extensibility Handbook

Selectors Product Documentation
If you are asking where to look for information about available global, message, and
component selectors and pseudo-classes, look first at Oracle Fusion Middleware Tag
Reference for Oracle ADF Faces Skin Selectors documentation. You’ll find this tag
reference as part of standard Oracle Fusion Middleware documentation. It is an
indispensable piece of product documentation that lists all available style selectors
with a corresponding description.

ADF Faces Rich Client Demos
This is another freely available demo hosted by Oracle at http://jdevadf.oracle
.com/adf-richclient-demo/faces/index.jspx. The skinning section of the demo
provides an interactive guide on how component skinning works. For example,
for the inputText component, if we click the check box next to
af|inputText::content{background-color:red}, we’ll be able
to see how it affects the appearance of the inputText component in
real time without having to refresh the screen:

As we can see from this example, if applicable, the icon selectors and aliases (style
classes) are also shown in the demo. This is a great way to start learning about ADF
skinning.

Browser Tools and Add-Ons
Browsers and their add-ons do not provide any ADF-specific tools for skinning;
however, Firefox add-ons like Firebug and Firefox’s inspect element feature do provide
extensive capability to inspect HTML documents and modify their style at run time for
development purposes.

14-ch14.indd 442 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 443

Apart from being very helpful for debugging purposes, these tools allow you to
view and visualize CSS, change their definitions on the fly, and explore the component
DOM tree in the browser. In the context of ADF skinning, the element inspection
feature allows developers to discover the names of the ADF skin selectors for a
particular component.

The element inspection feature is available in most modern browsers, and the
following screen shot shows the output from Firefox’s inspection plugin, which is
accessible by right-clicking on the page and selecting Inspect Element from the
context menu.

You’ll notice in Figure 14-1 that the style class names are obfuscated and show
up in HTML output as .xf1 and .xb7 for performance reasons in production
environments. During development or debugging, the feature that compresses style
class names can be switched off in the application’s web.xml file, and this will allow
us to see the full names of ADF style classes:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
 </param-name>
 <param-value>true</param-value>
</context-param>

FIGURE 14-1. Output from Firefox’s Inspect Element tool

14-ch14.indd 443 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

444 Oracle Fusion Applications Development and Extensibility Handbook

TIP
To familiarize yourself with available component
selectors, create an empty ADF page in JDeveloper,
add a component of interest, disable decompression,
and run the page inside JDeveloper’s integrated
WebLogic server. Use Firebug or a similar tool to
inspect generated HTML output.

Deploying and Setting Up
a Custom Skin in Fusion Applications
The principles of Fusion Applications skinning are no different than in any other
ADF application. In the next sections we’ll provide a step-by-step guide on how to
deploy a custom skin into a Fusion Applications instance. We’ll also discuss the
deployment options as well as profile options available to administrators to control
who and what applications are affected by the custom skin.

Creating and Deploying a Custom Skin Example
The skin that we are going to create and deploy in the example that follows is very
simple, and its purpose is not to teach you the nuts and bolts of ADF skinning, but to
show you the process and outline what it takes to create and deploy a custom skin
in Oracle Fusion Applications. With that said, let’s go through the steps starting with
opening of the stand-alone skin editor that we mentioned earlier in the section “ADF
Skin Editor and an Extension for Fusion Applications.”

Step 1: Create a Custom Skin Application
and Project in ADF Skin Editor
Open the ADF Skin Editor and go to File | New | ADF Skin Application. Enter
MySimpleSkin as both application and project names. In Step 2 of the Create ADF
Skin Application Wizard, set Target Application Release to match the release version
of Fusion Applications, which in our case is 11.1.1.6 since our Fusion Applications
instance where we are going to deploy the skin is version 11.1.6. Click Finish to
complete the wizard and project structures will be created for you.

Right-click on the MySimpleSkin project and from the context menu, add
mySimpleSkin by going to New | ADF Skin File and populate the values as shown
in Figure 14-2.

After you click the OK button, ADF Skin Editor will automatically create project
structures and required entries in trinidad-config.xml and trinidad-skins.xml
configuration files under the WEB-INF directory.

14-ch14.indd 444 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 445

The trinidad-config.xml file will contain the skin family name mySimpleSkin, which
is the name we are going to use when configuring Fusion Applications later on:

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>mySimpleSkin</skin-family>
 <skin-version>default</skin-version>
</trinidad-config>

Similarly, the trinidad-skins.xml file will contain the skin id, skin family name,
name of the parent skin we are extending, render kit, and the location of the style
sheet mySimpleSkin.css relative to the location of the configuration directory:

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>mySimpleSkin.desktop</id>
 <family>mySimpleSkin</family>
 <extends>fusionFx-simple-v1.2.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/mySimpleSkin/mySimpleSkin.css</style-sheet-name>
 <bundle-name>resources.skinBundle</bundle-name>
 </skin>
</skins>

FIGURE 14-2. Create ADF Skin File dialog

14-ch14.indd 445 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

446 Oracle Fusion Applications Development and Extensibility Handbook

Step 2: Design Your Custom Skin
Our skin is going to be very simple and is inspired by a very well-known Princess
skin that features in many JDeveloper tutorials on OTN. In fact, it is a cut-down
version of the Princess skin as we want our skin to change appearance of the default
font and navigation tabs.

Our skin defines the .AFDefaultFontFamily:alias global selector alias, which sets
a default font family for all ADF Faces components that display text. We also set
.AFDefaultBoldFont:alias and .AFDefaultBoldFont:alias global selector aliases. In
addition to that, we also define af|navigationPane and af|navigationTabbed
components as shown in Figure 14-3.

FIGURE 14-3. Global, Grouped, and Component selectors in a simple custom skin

14-ch14.indd 446 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 447

If we click the Source tab, the mySimpleSkin.css has the following selectors
defined:

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";
@namespace af "http://xmlns.oracle.com/appcore";

.AFDefaultFontFamily:alias {
 font-family: "Blackadder ITC", "Monotype Corsiva", "Apple Chancery", "Snell
Roundhand", fantasy;
}
.AFDefaultFont:alias {
 font-size: large;
 color: #800080;
}
.AFDefaultBoldFont:alias {
 color: #800080;
 font-size: x-large;
}
/* Enable themes for specific components */
af|navigationPane-tabs,
af|panelTabbed {
 -tr-enable-themes: true;
}
/* tab-start and tab-end do not render anything in the princess skin */
af|navigationPane-tabs::tab-start,
af|navigationPane-tabs::tab:selected af|navigationPane-tabs::tab-start,
af|navigationPane-tabs::tab-end,
af|navigationPane-tabs::tab:selected af|navigationPane-tabs::tab-end,
af|panelTabbed::tab-start,
af|panelTabbed::tab:selected af|panelTabbed::tab-start,
af|panelTabbed::tab-end,
af|panelTabbed::tab:selected af|panelTabbed::tab-end {
 border-width: 0px;
 width: 0px;
}
/* unselected tabs */
af|navigationPane-tabs::tab-content,
af|panelTabbed::tab-content {
 background-color: #CFDFF9;
 border-left: 1px solid purple;
 border-right: 1px solid purple;
 padding: 0px 10px;
}
af|navigationPane-tabs::tab-content,
af|panelTabbed::header af|panelTabbed::tab-content {
 border-top: 1px solid purple;
}
af|panelTabbed::footer af|panelTabbed::tab-content {
 border-bottom: 1px solid purple;
}
/* selected tabs */
af|navigationPane-tabs::tab:selected af|navigationPane-tabs::tab-content,
af|panelTabbed::tab:selected af|panelTabbed::tab-content {
 background-color: white;

14-ch14.indd 447 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

448 Oracle Fusion Applications Development and Extensibility Handbook

 border-left: 1px solid black;
 border-right: 1px solid black;
}
af|navigationPane-tabs::tab:selected af|navigationPane-tabs::tab-content,
af|panelTabbed::header af|panelTabbed::tab:selected af|panelTabbed::tab-content {
 border-top: 1px solid black;
}
af|panelTabbed::footer af|panelTabbed::tab:selected af|panelTabbed::tab-content {
 border-bottom: 1px solid black;
}

TIP
Prior to the 11.1.6 release, to customize a logo
we had to change UIShell, usually in JDeveloper.
As of the 11.1.6 release, a custom logo can
be updated through skin definition using the
.AFBrandingBarLogo style class.

Step 3: Deploy a Project to an ADF Library Jar File
In Java Enterprise Edition (JEE), a common deployment package is a jar file
containing configuration files in the META-INF and WEB-INF directories. In the case
of an ADF skinning project, the configuration files are under the WEB-INF directory.

We create the deployment profile by right-clicking on the MySimpleSkin project
and selecting Deploy | New Deployment Profile. When selecting the name for the
deployment profile, we need to make sure that it starts with “Xx_”; for example, in
our case Xx_MySimpleSkin. This is just a naming convention specific to Fusion
Applications and will ensure that the custom skin deployment is upgrade-safe.
When creating the new deployment profile, we can specify a local directory where
the jar file is going to be generated and saved. As we are running the Skin Editor on a
Windows machine, we selected the C:\ADF Skinning\MySimpleSkin\MySimpleSkin\
deploy directory to be the target directory where Xx_mySimpleSkin.jar is saved.

Step 4: Deploy a Generated Skin Jar File to Fusion Applications
Once the jar file is generated, we need to transfer it to the Fusion Applications middle
tier where individual applications are deployed to run inside the WebLogic server.
Prior to this point, we should have exercised a little bit of planning to decide which
applications and users should be affected by our custom skin. For the purposes of this
exercise we are going to deploy mySimpleSkin into the HomePageApp, which is the
first page we are presented with after a successful login.

We use the WinSCP tool to copy Xx_mySimpleSkin.jar from the desktop
machine into the exploded directory /app/fusion/fusionapps/applications/atf/deploy/
EarAtkHomePage.ear/EarAtkHomePage.war/WEB-INF/lib onto the middle tier
machine, which happens to be Linux.

14-ch14.indd 448 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 449

CAUTION
For releases prior to 11.1.6, in addition to a
custom skin jar file, you may also need to place
the adf-richclient-fusion-simple-11.1.1.5.0.jar
file found in Skin Editor’s jlib directory and the
XxApplCoreSkin.11.1.1.5.jar file found on OTN and
java.net into the application’s WEB-INF/lib directory.

Step 5: Set Profile Option FND_CSS_SKIN_FAMILY
Fusion Applications use the native capability of the ADF skinning framework to be
able to dynamically set and switch arbitrary skin definition at run time. This is
achieved by setting the FND_CSS_SKIN_FAMILY profile option by logging in as FA
System Administrator, or any other user with an appropriate role assigned to them to
access Functional Setup Manager, and navigating to the profile options task by
selecting Navigator | Setup and Maintenance (Tools) | All Tasks (Tab) and searching
for Manage Administrator Profile Values.

Click Go To Task and in the Manage Administrator Profile Values task, search for
the FND_CSS_SKIN_FAMILY profile option code and set our mySimpleSkin as
Profile Value for a user, product, or site, as demonstrated in Figure 14-4.

FIGURE 14-4. Setting a profile option value for FND_CSS_SKIN_FAMILY profile option

14-ch14.indd 449 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

450 Oracle Fusion Applications Development and Extensibility Handbook

Step 6: Bounce HomePageApp in WebLogic Common Domain
While the profile option to set a skin family value can be set before or after
restarting of HomePageApp, one thing we must do for the changes to take effect is to
restart the affected applications. To bounce this HomePageApp, follow these steps:

 1. Log in to the Common Domain Enterprise Manager Fusion Applications
Control. The URL pattern looks like http(s)://<hostname>:<common_
domain_port>/em.

 2. Expand nodes under Farm_CommonDomain | WebLogic Domain |
CommonDomain and select HomePageCluster. Click the WebLogic Cluster
button located just under the HomePageCluster label in the right-hand side
panel and navigate to Control | Shut Down. Once the cluster is stopped, go
back to Control | Start Up to restart the cluster.

 3. Verify that the HomePageApp is up and running by clicking on
HomePageCluster in the navigation tree on the left-hand side panel
inside Fusion Applications Control.

An alternative method is to use the fastartstop utility available to system
administrators. For example, to bounce the whole Common Domain including
HomePageApp, we issue the following commands:

cd /app/fusion/fusionapps/applications/lcm/ad/bin

./fastartstop.sh -Stop -domains CommonDomain -username weblogic_fa -appbase /

app/fusion/fusionapps/applications

./fastartstop.sh -Start -domains CommonDomain -username weblogic_fa -appbase /

app/fusion/fusionapps/applications -startAdminServer true

The fastartstop utility can also be used to start individual applications like
HomePageApp. You should consult the Fusion Applications user guide for system
administrators for more details.

TIP
Make sure that WebLogic domains are started with
the -startAdminServer switch set to true for Enterprise
Manager Fusion Applications Control to be available.

Now we should be able to log in to the Fusion Applications home page by
accessing http(s)://<host_name>:<common_domain_port>/homePage/faces/
AtkHomePageWelcome.

14-ch14.indd 450 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 14: Custom Look and Feel with ADF Skinning 451

We now see as illustrated in Figure 14-5 that our custom skin mySimpleSkin is
applied to the Home Page application and that it looks markedly different from the
default fusionFx skin that ships with Fusion Applications.

NOTE
If a user for whom the custom skin has been set up
navigates away from the Home Page application, he
or she will notice that the custom skin is not applied.
Instead, Fusion Applications will apply a simple skin,
and this is because we deployed our custom skin
only to HomePageApp. Rather, we need to make
sure to apply the custom skin to all applications that
are affected or will be accessed by the end users.
This is quite different from applying CLAF skins in
E-Business Suite where we needed to do this only
in one place for all applications. This is a price that
has to be paid for having modular applications
architecture.

FIGURE 14-5. Custom skin applied to Fusion Applications Home page

14-ch14.indd 451 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

452 Oracle Fusion Applications Development and Extensibility Handbook

Alternative Custom Skin Deployment Method
It is possible to create and place a custom skin into the exploded applications
directory directly without creating an ADF skin deployment jar file. For example we
can place mySimpleSkin.css into the <path_to_applications_dir>/atf/deploy/
EarAtkHomePage.ear/EarAtkHomePage.war/css directory, and update the trinidad-
skins.xml and trinidad-config.xml files under <path_to_applications_dir>/atf/deploy/
EarAtkHomePage.ear/EarAtkHomePage.war/WEB-INF to point to our mySimpleSkin
custom skin family.

While this may be OK in certain development environments, we do not
recommend this approach for production servers because patches can update
standard product file definitions and overwrite pointers to custom skin definitions in
the configuration files.

Summary
In this chapter we aimed to provide a gentle introduction to Fusion Applications
skinning through a brief discussion of the historical background of ADF skinning,
and an overview of Cascading Style Sheets and how they relate to skinning in ADF
and Fusion Applications. While the simple skin we presented in our hands-on
exercise won’t help you learn how to create pretty-as-a-picture Fusion Applications
styles, it is good enough to show you the concepts behind skinning, what it takes to
create one, and how to deploy custom skins into Fusion Applications environments.

14-ch14.indd 452 11/12/13 12:43 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

CHAPTER
15

Integration with
 Fusion Applications

15-ch15.indd 453 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

454 Oracle Fusion Applications Development and Extensibility Handbook

Fusion Applications are completely built from scratch and you have to implement
them from the ground up. You will find that the features and functions in Fusion
Applications may not be exactly the same as what you are using in other legacy

applications such as Oracle E-Business Suite, PeopleSoft, Siebel, or any other
non-Oracle application suite. Most of the time, you cannot simply shut down your
existing applications and immediately move to use Fusion Applications in a
production instance. Sometimes you may not find all necessary functions and products
in Fusion Applications and you may have to continue to use your legacy application
and Fusion Applications at the same time. You have to migrate your data from existing
systems to a new Fusion Applications instance. All of this means that there is a need to
integrate Fusion Applications with other non-Fusion applications or other systems.
In this chapter, we will discuss some of the integration patterns and best practices of
how you can integrate with Fusion Applications.

You can integrate with Fusion Applications to exchange data both inbound and
outbound. You can also integrate using real-time or batch mode to exchange
information. Different products have different capabilities, but the general strategy for
integration remains the same. For inbound, you will use Web services or bulk import
tools, and for outbound, you will use business events or bulk export tools. You can
use your choice of middleware for integrations because Fusion Applications are built
on standards-based Fusion Middleware. The following diagram illustrates the general
interaction pattern for Fusion Applications along with Fusion Middleware.

Web Service

Business Event

Interface Table

Flat File

Web Service

Business Event

Interface Table

Flat File

Fusion Middleware

WebLogic Server

Oracle SOA

Messaging Infrastructure
SOAP
AQ
JMS

S/FTP
Other Adapters

Inbound Web
Service Call

Inbound Web
Service Call

Bulk Import Bulk Import

Outbound Web
Service Call

Bulk Export

Outbound Web
Service Call

Bulk Export

Event
Noti�cation

Event Noti�cation

Fusion Applications Other Applications

What Is Oracle Enterprise
Repository (OER)?
Fusion Applications document all the integration artifacts or assets in Oracle Enterprise
Repository (OER). You can use OER as a single source of integration information. It
provides visibility into lifecycle and support details about a given asset. Each asset is
marked with the level of compatibility supported by Oracle. You can discover all assets
in OER, including the ones that are not supported.

15-ch15.indd 454 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 455

Fusion Applications are designed with Service Oriented Architecture in mind.
There are many services in Fusion Applications, but not all of them are suited for
integration purposes. You should only use assets that are marked as Compatibility =
“Supported – Backward Compatibility Assured” for integrations so that upgrades or
patches do not break your code. The services in OER are also marked with the
keyword EXTERNAL to indicate that the service end point is visible to external
clients. Table 15-1 explains the intended usage of assets with a given compatibility.

Compatibility Keyword Usage

Supported EXTERNAL Services are available to external clients.
Services can be used by customers and
partners to extend and integrate with Fusion
Applications.

Supported INTERNAL or not
specified

Services cannot be accessed by external
clients but can only be accessed by custom
composites that are deployed in Fusion
Applications SOA domains.

Not Supported EXTERNAL These series are accessible to external clients
but not designed to be used for integration
purposes by customers or partners. Such
services are made external for specific out-of-
the-box integration Fusion Applications may
have as part of standard functionality. Oracle
can change the interfaces at any time without
notice to customers.

Not Supported INTERNAL or not
specified

Services cannot be accessed by external
clients and should not be used even by
custom composites that are deployed in
Fusion Applications SOA domains. Oracle
can change the interfaces at any time without
notice to customers.

TABLE 15-1. Customization Layers

15-ch15.indd 455 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

456 Oracle Fusion Applications Development and Extensibility Handbook

What Are the Different Types
of Assets in OER?
OER documents all Fusion Applications assets. In this section, we will describe some
of the important types of these assets that you will use for integration purposes.

Web Services
Fusion Applications use standards-based Web services to allow inbound
integrations. Any development environment or tool that is compliant with Web
service standards can be used to invoke Fusion Applications Web services. Fusion
Applications expose two types of Web services depending on their underlying
implementation. Both the services are exposed in OER—ADF Services and SOA
Composite services.

ADF Services
ADF Services are built on Fusion Applications business components. These services
expose standard Create, Read, Update, and Delete (CRUD) type of operations to
manipulate the data for a given object. ADF Services also expose special operations
to do a specific business function such as convert a lead to an opportunity or
promote an employee. These services allow you to access the data using Service
Data Object (SDO) where the entire object structure is exposed to the service
interface using a schema (XSD). The standard SDO-based ADF service for a given
object will have create, update, delete, get, find, and merge operations that you can
use to query and manipulate the data for a given object. The merge operation is a
combination of insert and update in which the data is created if the row is not found
for the given identifier. The find operation is a very powerful tool to return the data
based on your filter conditions as well as attributes that you like to see in the output
of the service invocation. All the operations and input/output schema for a given
service are documented in OER and can be seen from the Web service definition
file (WSDL) as well.

SOA Composite Services
A composite service typically represents a complete business flow such as order
fulfillment. This service might be triggered by certain actions or functions within
Fusion Applications or can be invoked explicitly by a program or client. Composite
services may be non-object-based and represent an end-to-end back-end process
that spans multiple objects and orchestrates other ADF Services, human task workflow,
or business rules. The composite services are also described by WSDL and XSD and
can be invoked by any standard Web service client, similar to the way you invoke

15-ch15.indd 456 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 457

ADF Services. Fusion Applications use composite services when there is an out-of-the-
box integration between different functions and the integration needs to be loosely
coupled between those applications. Typically these composites are triggered by
raising business events in one application and use ADF Services to communicate
between these applications.

Business Events
Fusion Applications business objects publish business events to the Event Delivery
Network (EDN). Business events are a way to notify any subscriber about any change
to a given business object. Every object in Fusion Application does not raise business
events; you can check product-specific documentation to find out if there are events
that are not documented in OER. The business events for a given object could be
raised on create, update, or delete of a given instance of the business object. There
are business process–specific events such as bulk import as well that are available in
Fusion Applications.

Scheduled Processes
Fusion Applications use Enterprise Scheduler Services (ESS) for background processing.
You can find these ESS programs in OER and understand details such as their use,
parameters required to run the process, and so on. Some of the ESS programs are
exposed as a task in FSM so that the administrator does not need to understand the
details behind it. Some are invoked internally from the UI or from SOA composites.
Please read Chapter 13 for more details on ESS.

Tables and Views
All the physical tables and views for Fusion Applications are available in OER. These
tables are used to store the transaction, setup, and configuration data. OER exposes
all important information such as the table description, columns, column description,
index, constraints on the table, and so on. Most of the important Fusion Applications
objects support bulk import, which is useful for initial data load or migration or
periodic bulk updates. Typically, data loads are done through interface tables where
you populate the data in raw format and then the Fusion Applications import program
will move the data into transaction tables. In the process, it will apply the necessary
data conversions and validation rules to make sure there are no data integrity issues.
You can load the interface tables in a variety of ways such as Oracle Data Integrator
(ODI), a database adapter in Oracle SOA Suite, or SQL commands or loaders.

15-ch15.indd 457 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

458 Oracle Fusion Applications Development and Extensibility Handbook

Data Model Diagrams
In addition to physical table information, OER also exposes data model diagrams. You
can find the diagram for a given logical area. The diagram shows relationships between
physical tables and helps you understand internal implementation. OER exposes both a
logical data model diagram and a physical relational data model diagram.

How to Discover
Integration Assets in OER
To view OER on your deployment, navigate to http:/host:port/oer where you have
installed OER. This gives you information based on the Fusion Applications release
you have provisioned and gives you a concrete URL for WSDL and XSD. You can also
go to the public OER hosted by Oracle at https://fusionappsoer.oracle.com if you just
want to discover assets. This publicly hosted OER is for the latest Fusion Applications
release that is available for download from Oracle e-Delivery. You can log in to OER,
either as a guest or with an authenticated account as shown in Figure 15-1.

Once you log in to OER, you can find what is new in the current release, how to
find documentation for various products, and how to search assets in OER as shown
in Figure 15-2.

FIGURE 15-1. OER login screen

15-ch15.indd 458 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 459

We will search for a Web service to manage location data in the customer data
management module using OER in this section.

 1. From the Assets search window on the left-hand side, select Type as ADF
Service as shown in the following illustration.

FIGURE 15-2. OER home page

15-ch15.indd 459 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

460 Oracle Fusion Applications Development and Extensibility Handbook

 2. Select Customer Data Management as Logical Business Area.

 3. Provide the search string as location and click the Search button. This will
return the matching services for the given criteria as shown here.

 4. You can examine the details about the selected service on the Overview tab.
It provides a description of the service, its lifecycle, and compatibility details
as shown in Figure 15-3.

15-ch15.indd 460 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 461

 5. You can examine the operations, their description, and input and output
parameters for this service on the Detail tab, as shown in Figure 15-4.

 6. The Detail tab also shows you the WSDL location for this service as
shown here.

FIGURE 15-4. Location service operations

FIGURE 15-3. Location service details

15-ch15.indd 461 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

462 Oracle Fusion Applications Development and Extensibility Handbook

 7. The Documentation tab allows you to check the XSD for this Web service
and its operations. It also provides you a link to the cookbook on how the
service can be invoked and complete details about the service from OER, as
shown in Figure 15-5.

 8. The Privileges tab gives details about what privileges and roles the user will
need to access the service and its operations, as shown in Figure 15-6.

 9. Similarly, you can search for other types of assets and examine all the details
about the artifact and how you can use that for your integrations using OER.

FIGURE 15-5. Location service documentation

FIGURE 15-6. Location service security

15-ch15.indd 462 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 463

Outbound Integration Patterns
with Fusion Applications
You may need to call out to other applications from Fusion Applications when your
business requirements span multiple applications. Outbound calls may be needed for a
totally new business process or as a customized or extended process to Fusion
Applications. Different precuts in Fusion Applications provide different capabilities to
do outbound integrations. We will briefly discuss these options in the following section.

Object Workflow
CRM Application Composer provides you a feature called Object Workflow as
discussed in Chapter 6. This feature allows you to define your own events and triggers
on several out-of-the-box objects in CRM. In response to the event you define, you
can choose an outbound service call as an action. You need to first use OER or
product-specific documentation to find out the Web service interface for a given
object for outbound call and then build your own WS that takes the same XSD as
input. Once you have your own service that take a CRM object as input, you register
that service with a CRM object workflow outbound call in response to the event for
that object. At run time, when the condition specified in Object Workflow is satisfied,
it will call out the Web service you registered. Your Web service will need to do
whatever action you may need per your requirement to take the object details and
communicate to other applications. The CRM Object Workflow is the only mechanism
that lets you do real-time outbound integration with Fusion Applications in SaaS
deployment mode. This option works for On-Premise customers as well.

Business Events
Fusion Applications provide many business events on several objects. These events
are raised on Fusion Applications SOA domain EDN for a given product family such
as CRM or HCM. Since these events are raised within the Fusion Application domain,
SaaS customers cannot subscribe to these events. You can consume these events if
you have access to middleware domains in your On-Premise deployment. You can
use OER to find out what business events are available for a given area. Some events
may not be documented, so you may have to read product-specific documentation
for that. Once you find out the event details, you can create an SOA Composite
With Mediator that will subscribe to the event using the Event Definition Language
(EDL) file. The event payload should give you enough information to then get more
details about the object and do necessary processing with that data in your composite.
If there are no existing events that meet your needs, you can use JDeveloper as
discussed in Chapter 7 to add your own custom events and subscribe to them in
your Mediator. Business events are the standard and recommended approach to do
outbound integration with Fusion Applications.

15-ch15.indd 463 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

464 Oracle Fusion Applications Development and Extensibility Handbook

Bulk Export
There are certain Fusion Applications products that provide Bulk Export interfaces,
which allow you to extract the data out of Fusion Applications. Fusion CRM
applications have a “Schedule Export Processes” FSM task that allows you to select
an object you want to export, the filter criteria, the attributes to export, and the
scheduling frequency. You can use this task to get the data out of CRM applications
either on SaaS or On-Premise deployment. Figure 15-7 shows an example of
exporting location data with a few selected attributes.

Similarly, HCM applications have a Bulk Extract interface that allows you to
specify data blocks to be extracted for given logical entity. It allows you to specify
extract parameters, delivery options, delivery schedule, and other mappings that you
can use for reporting purposes. You can access the HCM extract UI using the FSM
task “Define Extracts.” Figure 15-8 shows an example payroll extract. Please read
HCM product documentation for more details on all the configuration and extract
options and capabilities.

FIGURE 15-7. Bulk Export configuration

15-ch15.indd 464 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 465

Inbound Integration Patterns
with Fusion Applications
Similar to outbound integration, you may need to do inbound integration with Fusion
Applications to bring in data or take certain actions based on the changes happening
in your other applications. Most of the products in Fusion Applications support both
real-time and batch integration capabilities. We will discuss some of the common
integration points in this section for inbound calls to Fusion Applications.

Calling Web Services
Invoking ADF service from a client can be done in various ways. You can use Web
service binding or BPEL entity variables if you are using BPEL, or use a proxy class if
it is a Java client or any other tool to call a service. You can invoke the service as
synchronous request-response invocation or asynchronous request-reply invocation.

Making a Synchronous Service Call
Fusion Applications expose synchronous services. You will use synchronous service
calls when you expect the call to return very quickly. These services return the response
to the caller, and until the response is returned, the caller will keep waiting as shown
in the following illustration.

Call Sync Method

Service Response

Synchronous
Web Service

Implementation

Client
Initiates the

Synchronous
Web Service Call

FIGURE 15-8. HCM export definition

15-ch15.indd 465 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

466 Oracle Fusion Applications Development and Extensibility Handbook

Making an Asynchronous Service Call
Fusion Applications expose several services that might be long-running or take a
significant amount of time for the client or caller to keep waiting for the reply.
Fusion ADF Services typically expose asynchronous interfaces in addition to
synchronous for a given service operation. You can find the details in OER for a
given service. The asynchronous service call can be easily made from a BPEL process,
and the process will wait for the response from the service to come back. To provide
this asynchronous interface and right callback to waiting clients, Fusion Applications
use the Advance Queue (AQ) feature in the Fusion database. The Fusion Applications
database has these AQs per product family to handle request and response, such as
CRM_AsyncWS_Request and CRM_AsyncWS_Response. The administrator can
monitor these queues for diagnostics. The SOA run time uses a Web service addressing
mechanism to automatically correlate the asynchronous service call back to the right
client. The following list describes the flow of events when you make an asynchronous
service call, as shown in Figure 15-9.

 1. The client calls an asynchronous method.

 2. The asynchronous Web service receives the request and stores it in the
request queue.

 3. The asynchronous Web service sends a receipt confirmation to the client.

FIGURE 15-9. Asynchronous service call

Call Async Method

Con�rmation

Client
Initiates the

Asynchronous
Web Service Call

Callback
Service

Send Response

Con�rmation

Request MDB

Response
MDB

Call Method Return Response

Save
Request

Asynchronous
Web Service

Implementation

Save
Response

Con�rmation

Con�rmation

OnMessage

Response
Queue

Request
Queue

OnMessage

15-ch15.indd 466 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 467

 4. The MDB listener on the request queue receives the message and initiates
processing of the request.

 5. The request MDB calls the required method in the Web service
implementation.

 6. The Web service implementation returns the response.

 7. The request MDB saves the response to the response queue.

 8. The request MDB sends a confirmation to the request queue to terminate the
process.

 9. The onMessage listener on the response queue initiates processing of the
response.

 10. The response MDB, acting as the callback client, returns the response to the
callback service.

 11. The callback service delivers the response to the client that initiated the
request if the client was waiting for the response.

 12. The callback service returns a receipt confirmation message.

 13. The response MDB returns a confirmation message to the response queue.

Primary Key Management
When integrating using Web services, the ADF Services typically need the caller to
pass the surrogate primary key of the object to identify the data to be updated.
Sometimes the services also expose the user-friendly alternative keys in the service
interface and the caller can pass those alternative keys to identify rows to be updated
instead of surrogate primary key values. In both cases, you will need a way to cross-
reference the keys between Fusion Applications and your other external application
that you integrate with Fusion Applications. There are four ways in which you can
achieve this cross-referencing.

Cross-Reference in Fusion In this approach, Fusion Applications store the cross-
reference to external system keys. Some Fusion Applications such as Customer Data
Management have a built-in infrastructure to store such cross-references. It simply
maps the Fusion surrogate primary key to the external system keys that you will have
at hand when you get the event originated in the external system. You can then query
Fusion Applications using those external keys to get Fusion surrogate key values to
be used for calling the service.

15-ch15.indd 467 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

468 Oracle Fusion Applications Development and Extensibility Handbook

Cross-Reference in External Systems In this approach, the cross-reference to
Fusion Applications entities is stored in your external system. It is very similar to the
first approach, but the mapping is stored in an external system. When you want to
call the Fusion Applications Web service, you will need to look up the cross-
reference in your external system to identify the surrogate keys and then use those
keys to call the service.

Cross-Reference in Middleware The Fusion Middleware SOA Suite has built-in
cross-reference functionality that you can use to manage the cross-reference between
your external applications and Fusion Applications. You may choose to use this
approach if you want to maintain this cross-reference outside of your applications
and be able to use it for many cross-application integrations. You will use this
middleware cross-reference map to look up keys before calling necessary services.

Using Alternative Keys Some of the Fusion Applications services allow you to pass
alternative business keys in addition to surrogate primary key values. In such cases,
when you create the data, you can populate these alternative key attributes in Fusion
with exact values from your external or source system. When you need to update
the data in future, you can simply pass the value of these keys as you get them from
your external system without any lookup. Note that this approach works only for
one-to-one system integration. If you had multiple systems with different values for
these alternative keys, this approach will not work and you will have to keep the
cross-reference for each system by following one of the three options discussed
earlier.

Security
Fusion Applications Web services are secured using Oracle Web Service Manager
(OWSM), which follows Web service security standards. Different services implement
different security policy on the server side. The clients need to use appropriate client-
side policy accordingly in order to make a successful service call. You can examine
the security policy on a given service either in the WSDL or in the Enterprise Manager
where the service is deployed. The administrator can modify the out-of-the-box
security on a service using Enterprise Manager. Please read the Oracle Fusion
Middleware Security and Administrator’s Guide for Web Services to understand
more about the security and how to call services with different policies.

Bulk Import
Many Fusion Applications provide bulk import capabilities that you can use to do
initial loads or migrate data from your legacy or external applications. To bulk-import
data, you will first need to load the raw data in the interface tables. Then run the
background processes from Fusion Applications to load the interface data into the

15-ch15.indd 468 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 469

transaction tables. Please read product-specific documentation to understand what
capabilities are provided to load specific object data. The typical bulk import flow
looks like Figure 15-10.

File Import
Some of the Fusion Applications, such as CRM and HCM, provide utilities to import
data from files from end users. The tools take files in formats such as CSV, XML, and
XLS as input from the desktop of the user or from a network-accessible location. The
tool then uses the regular interface tables and kicks off the import processing. These
loaders also provide user interfaces to monitor and review the progress of the process
and inspect the errors. You can use the Manage Import Activities task to use a file
import interface for CRM applications. You can choose the object from this UI that
you want to import and then use the mapping tool to specify what attribute from
your input file format maps to the object attribute and submit the batch to start the
import process. Please read product-specific documentation to understand more
about the specific capabilities of the file import.

An Example Integration
Using Standard Patterns
In this section, we will discuss a sample integration using some of the patterns
discussed in this chapter. We will use SOA Composite and Web services to do both
outbound and inbound integration with Fusion Applications. The high-level integration
flow looks like the chart in Figure 15-11. Note that in this example, we are using
Fusion Applications as a source of both outbound and inbound integration. The
event is originated in Fusion Applications when you create a new location using a
page, and you get the outbound message in the form of business event in the SOA

FIGURE 15-10. Bulk import data flow

XML Files
CSV Files

Database

ODI

SQL
Loader

ETL

Fusion Applications

Interface
Tables

Processing
Jobs

Fusion
Transaction

Tables

15-ch15.indd 469 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

470 Oracle Fusion Applications Development and Extensibility Handbook

composite. You will then use a synchronous Web service operation to get the details
of the location created out of the Fusion Application. And then make an inbound
service call to the same Fusion Application to make some changes to the location.
In real integration scenarios, the application on the other side will be your external
application that you want to integrate with Fusion Applications.

To build this integration, we will need to follow several sets of tasks.

Define a Connection to MDS Repository
to Find an Event Definition
Once you have identified the name of the business event that you need to listen
to, either using OER or from product documentation, you can discover the event
definition and schema using the SOA MDS repository on your environment.

 1. Go to JDeveloper and view the Resource Palette. Select New Connection:
SOA MDS as option to create a new connection to your Fusion Applications
SOA MDS repository.

 2. Give your connection a name, select Connection Type as DB Based MDS,
provide database connection details for the CRM_FUSION_MDS_SOA schema
user, select MDS partition as soa-infra, and test that the connection is successful.

FIGURE 15-11. Typical integration pattern between applications

Fusion Applications

Fusion Middleware

SOA Composite

Call WS
updateLocation

Make changes
to Location

Call WS
getLocation

Listen Event
CreateLocation

Business Event
CreateLocation

Raised from ADFbc
when location created

Location
Web Service
getLocation

updateLocation
createLocation

Event Noti�cation

Outbound

Response
Request

Response
Request

You could listen to
event from external
applications for inbound
integration to Fusion

You will call external
application WS to get
details that you want to
push to Fusion

You will transform
external application
shape to Fusion service
input shape

You will call external
application service for
outbound integration.
You call Fusion WS for
inbound integration

15-ch15.indd 470 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 471

 3. Once the connection is created, you can expand the connection and find out
the event definition for the create location at oracle.apps.cdm.foundation.
parties.publicModel.locations.entity.events as shown in Figure 15-12.

FIGURE 15-12. Finding a location event in MDS connection

15-ch15.indd 471 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

472 Oracle Fusion Applications Development and Extensibility Handbook

FIGURE 15-13. Creating a new application

Define a New SOA Composite Application
and Subscribe to Events
In this section, we review the steps to define a new SOA composite and subscribe to
the event that is raised when a new location is created.

 1. Select the New Application option, give it the name
FusionAppsLocationIntegration, and choose the SOA Application template
as shown in Figure 15-13.

 2. Click Next and name the project as LocationIntegration. Click Next, give
the composite name LocationIntegration, choose template Composite With
Mediator as shown in Figure 15-14, and click Finish to complete the wizard.

 3. In the Create Mediator dialog, give it the name LocationCreate and choose
the template Subscribe to Events. Now click the Add icon to subscribe to a
new event as shown in Figure 15-15.

15-ch15.indd 472 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 473

FIGURE 15-15. Subscribe to an event using Mediator

FIGURE 15-14. Creating a new SOA Composite With Mediator project

15-ch15.indd 473 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

474 Oracle Fusion Applications Development and Extensibility Handbook

 4. Click the browse icon for picking the event definition file for the Location
Creation event.

 5. In the SOA Resource Browser dialog, select Resource Palette and select
LocationEO.edl.

15-ch15.indd 474 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 475

 6. Choose CreateLocation as the event name in the Event Chooser dialog and
click OK to complete the wizard.

Create a BPEL Process and
Route the Event to the Process
In this section, we define a new BPEL process that will orchestrate our flow for
integration and route the incoming event from the SOA composite to the BPEL process.

 1. Select File | New from the menu and choose to create a new BPEL Process
as shown in Figure 15-16.

 2. Name the BPEL process as ProcessLocation. Choose the Synchronous BPEL
Process template and set the transaction to requiresNew as shown in Figure
15-17.

15-ch15.indd 475 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

476 Oracle Fusion Applications Development and Extensibility Handbook

 3. This illustration shows the SOA composite.

FIGURE 15-16. Creating a new BPEL process

15-ch15.indd 476 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 477

 4. Now double-click on the LocationCreate mediator. Click the green add icon
(+) to define a new routing rule that will route the event to a BPEL process as
shown here.

FIGURE 15-17. Configure BPEL process properties.

15-ch15.indd 477 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

478 Oracle Fusion Applications Development and Extensibility Handbook

 5. Select Service as the routing rule target type.

 6. Choose the newly defined BPEL process as the target service.

 7. Click the Transform icon to pass the LocationId value from the event to the
BPEL process.

15-ch15.indd 478 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 479

 8. Choose the Create New Mapper File option in the Event Transformation Map
dialog.

 9. On the XSLT transformation, map the LocationId : newValue : value field to
the BPEL process input field by drag and drop.

 10. The SOA composite after this routing rule looks like Figure 15-18.

FIGURE 15-18. SOA Composite With Mediator routing to BPEL process

15-ch15.indd 479 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

480 Oracle Fusion Applications Development and Extensibility Handbook

Deploy to Application Server
and Test Event Subscription
Now we will deploy this SOA composite to an application server for testing.

 1. Select Application Server Navigator from the View menu. Right-click and
choose the New Application Server option as shown in the following
illustration. Complete the wizard by providing the server name, port, and
login credentials, and then test the connection.

 2. Right-click on the LocationIntegration project and choose the Deploy:
LocationIntegration option. In the Deployment Action dialog, choose the
Deploy to Application Server option as shown in Figure 15-19. Choose the
application server connection created in Step 1 and complete the wizard to
deploy the SOA composite to the server.

 3. You can use the Customer Center application in CRM or Receivables
application in Financials or Party Center from Customer Data Management
to create a new party along with address. This will create a new location
and raise the CreateLocation event that our SOA composite subscribes to.
Figure 15-20 shows the Create Organization page in party center.

15-ch15.indd 480 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 481

FIGURE 15-20. Create Organization application user interface

FIGURE 15-19. Deploying SOA composite

15-ch15.indd 481 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

482 Oracle Fusion Applications Development and Extensibility Handbook

 4. You can check if a given business event was raised or not by going to EDN
logs for your SOA deployment at http://host:port/soa-infra/events/edn-db-log.
Once you save the data on UI, you can see the CreateLocation event in the
soa edn log as shown in Figure 15-21.

 5. Now we will check the SOA composite instance and validate whether the
event was delivered and our BPEL process was triggered or not. Log in to the
Enterprise Manager at http://host:port/em. Once you log in to em, expand
SOA : soa-infra and click Default. Search for Location to find your SOA
composite as shown in the following illustration.

FIGURE 15-21. Business event in EDN log

15-ch15.indd 482 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 483

 6. Click on LocationIntegration composite to check all instances of this
SOA composite. Click on the first Instance ID as shown in the following
illustration to see details.

 7. This launches the composite Flow Trace window. You can see that the
composite received the CreateLocation event that was received by
LocationCreate mediator and routed to ProcessLocation BPEL process as
shown in Figure 15-22.

FIGURE 15-22. SOA composite instance flow trace

15-ch15.indd 483 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

484 Oracle Fusion Applications Development and Extensibility Handbook

 8. This opens the BPEL process Audit Trail window. As you can see, it shows
that the BPEL process received a LocationId that we transformed from the
event to BPEL process input as shown in Figure 15-23. We will use this
LocationId value in the rest of the BPEL process to now interact with Web
services.

Build BPEL Flow to Process Location Data
Now that we have an SOA composite that successfully instantiates on a business
event, we will add processing logic in the BPEL. We will first use the getLocation
service to get the full details of the location and then make an update and call
updateLocation service to make changes and validate that using the UI.

 1. Open the BPEL process in the editor. Drag and drop Partner Link from the
Component Palette onto the BPEL process as shown in Figure 15-24.

FIGURE 15-23. Empty BPEL process instance audit trail.

15-ch15.indd 484 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 485

 2. Give it the name LocationService and click on SOA Resource Browser as
shown here.

FIGURE 15-24. Adding a partner link to BPEL process

15-ch15.indd 485 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

486 Oracle Fusion Applications Development and Extensibility Handbook

 3. In the browser window, select Resource Palette and browse your SOA MDS
connection to select oracle.apps.cdm.foundation.parties.locationService.

 4. Choose the Partner Link Type and My Role as shown in the following
illustration and click OK.

15-ch15.indd 486 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 487

 5. Modify the adf-config file from the Application Resources: Descriptors: ADF
META-INF folder to use namespace /apps instead of /apps/oracle as shown
in Figure 15-25.

 6. Now drag and drop the Invoke activity onto the BPEL process between
receiveInput and replyOutput. Connect the Invoke activity to LocationService
as shown in Figure 15-26.

FIGURE 15-25. Specify namespace in the adf-config file.

15-ch15.indd 487 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

488 Oracle Fusion Applications Development and Extensibility Handbook

 7. In the Edit Invoke dialog, provide the name InvokeGetLocation. Select
getLocation as the Operation. Click the green plus icon to automatically
generate input and output variables that will be used for this service call as
shown in Figure 15-27.

 8. The getLocation service needs the LocationId input parameter. Our BPEL
process gets the LocationId as input. We will pass the input of BPEL to
the input of the WS invoke variable. Drag and drop the Assign activity
on the BPEL process between the receiveInput and InvokeGetLocation
activities. Name this activity as AssignLocationId. Double-click on the
assign activity and go to the Copy Rules tab. Map the inputVariable input to
InvokeGetLocation_getLocation_InputVariable locationId variable as shown
in Figure 15-28.

FIGURE 15-26. Adding Invoke activity for get location service

15-ch15.indd 488 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 489

FIGURE 15-27. Defining operation to invoke and variables

FIGURE 15-28. Adding Assign activity to pass input variable to a service call

15-ch15.indd 489 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

490 Oracle Fusion Applications Development and Extensibility Handbook

 9. Drag and drop the invoke activity between InvokeGetLocation and
replyOutput activity and name it InvokeUpdateLocation. Connect this
invoke with the LocationService Partner link, choose updateLocation as the
Operation, and choose the default variables as shown in Figure 15-29.

 10. Now we will assign the output of the getLocation service call to the input of the
updateLocation service call. Later we will modify this to make some updates
as well. Drag and drop the assign activity between InvokeGetLocation
and InvokeUpdateLocation activity and name it AssignUpdateLocation.
Map the InvokeGetLocation_getLocation_OutputVariable result to the
InvokeUpdateLocation_updateLocation_InputVariable location. Note that
both of the variable parts are of same type, Location, and we can map them
as shown in Figure 15-30.

FIGURE 15-29. Adding Invoke activity for update location service

15-ch15.indd 490 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 491

 11. Now we will modify address line 1. Right-click on the middle section and
choose an expression as shown in the following illustration. Type Update
Address 1 and click OK.

 12. Connect this expression to Address1 in the variable InvokeUpdateLocation_
updateLocation_InputVariable as shown in Figure 15-31.

 13. Now we will need to add appropriate security policies to the service that
we are calling from the composite. You can find supported security policies
for a given service from OER. Right-click on the service reference in your
composite.xml file and choose Configure WS Policies | For Request as

FIGURE 15-30. Add Assign activity for update location input variable.

15-ch15.indd 491 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

492 Oracle Fusion Applications Development and Extensibility Handbook

shown in the following illustration. Click the Add Security Policies button
under the Security section and choose the security policy oracle/wss11_
saml_token_with_message_protection_client_policy.

 14. Similarly, configure Callback security policy and choose oracle//wss11_
saml_or_username_token_with_message_protection_service_policy.

FIGURE 15-31. Assign the modified value to update the location input variable.

15-ch15.indd 492 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 493

 15. Validate that you have a service reference in the composite.xml file as shown
in the following code. If it is missing, please add manually.

 <reference name="LocationService"

 ui:wsdlLocation="oramds:/apps/oracle/apps/cdm/foundation/parties/

locationService/LocationService.wsdl">

 <interface.wsdl interface="http://xmlns.oracle.com/apps/cdm/foundation/parties/

locationService/applicationModule/#wsdl.interface(LocationService)"

 callbackInterface="http://xmlns.oracle.com/apps/cdm/foundation/

parties/

locationService/applicationModule/

#wsdl.interface(LocationServiceResponse)"/>

 <binding.ws port="http://xmlns.oracle.com/apps/cdm/foundation/parties/

locationService/applicationModule/

#wsdl.endpoint(LocationService/LocationServiceSoapHttpPort)"

 location="oramds:/apps/oracle/apps/cdm/foundation/parties/

locationService/LocationService.wsdl">

 <wsp:PolicyReference URI="oracle/wss11_saml_token_with_message_

protection_client_policy"

 orawsp:category="security" orawsp:status="enabled"/>

 </binding.ws>

 <callback>

 <binding.ws port="http://xmlns.oracle.com/apps/cdm/foundation/parties/

locationService/applicationModule/

#wsdl.endpoint(LocationService/LocationServiceResponse_pt)">

 <wsp:PolicyReference URI="oracle//wss11_saml_or_username_token_with_message_

protection_service_policy"

 orawsp:category="security"

 orawsp:status="enabled"/>

 </binding.ws>

 </callback>

 </reference>

 16. Make sure the following wiring information is in the composite.xml file for
this service reference to BPEL process as shown here.

 <wire>

 <source.uri>processlocation_client_ep</source.uri>

 <target.uri>ProcessLocation/processlocation_client</target.uri>

 </wire>

 <wire>

 <source.uri>LocationCreate/ProcessLocation.processlocation_client</source.uri>

15-ch15.indd 493 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

494 Oracle Fusion Applications Development and Extensibility Handbook

 <target.uri>ProcessLocation/processlocation_client</target.uri>

 </wire>

 <wire>

 <source.uri>ProcessLocation/LocationService</source.uri>

 <target.uri>LocationService</target.uri>

 </wire>

Deploy the SOA Composite
with Concrete Service URL
In this section, we will deploy our SOA composite such that the service reference in
the composite points to the right service URL.

 1. The SOA composite service reference points to the WSDL location in the
MDS connection we used. We need to use a configuration plan so that
this reference service location gets updated with a concrete service URL
during deployment. Save the following content as an FADeployPlan.xml file.
Replace the host and port in the file to point to the real host and port where
your service is deployed.

<?xml version="1.0" encoding="UTF-8"?>

<SOAConfigPlan xmlns="http://schemas.oracle.com/soa/configplan">

 <composite name="LocationIntegration">

 <reference name="LocationService">

 <binding type="ws">

 <attribute name="location">

 <!--replacing node for portType {http://xmlns.oracle.com/apps/cdm/

foundation/parties/

locationService/applicationModule/}LocationService-->

<replace>http://host:port/foundationParties/LocationService?WSDL</replace>

 </attribute>

 </binding>

 </reference>

 </composite>

</SOAConfigPlan>

 2. Select the SOA composite project and build it.

 3. Right-click on the project and select LocationIntegration.

 4. Select Deploy to Application Server from Deployment Action.

 5. Choose this file as deployment plan as shown in Figure 15-32.

 6. Choose your application server in the next step and complete the
deployment wizard.

15-ch15.indd 494 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 495

 7. Go to Enterprise Manager for your deployment at http://host:port/em and
navigate to SOA: soa-infra: default and click on your SOA composite
LocationIntegration.

 8. Click on the SOA Composite drop-down and select the Export option.

FIGURE 15-32. Using SOA configuration plan for deployment

15-ch15.indd 495 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

496 Oracle Fusion Applications Development and Extensibility Handbook

 9. On the Export Composite page, choose Option 1: Export with All Post-
deploy Changes and click the Export button. This downloads the SOA jar
file. Unzip the file, open the composite.xml file, and validate that the service
reference is updated to a concrete URL instead of the MDS URL you see in
JDeveloper: location=”oramds:/apps/oracle/apps/cdm/foundation/parties/
locationService/LocationService.wsdl”. If you see the right URL, it confirms
that the deployment was accurate.

Test the Complete Integration Flow
We will test the complete integration flow now and see how to validate.

 1. Use any application to create a new address as indicated previously.

 2. Go to EM and find the instance for your SOA composite. Click on the instance
ID to open the composite to see the details of our flow. Expand the trace
and you can see that the composite listens to the event and calls the BPEL
process, and the BPEL process has successfully called the two services, as
shown in the following illustration.

 3. Click the ProcessLocation link to open the BPEL process and examine the
Audit Trail.

 4. You can expand each step in the flow and see the data being processed as
shown in Figure 15-33.

15-ch15.indd 496 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 497

How to Test Fusion Applications
Web Services
You can test Fusion Applications Web Services using Enterprise Manager. You can
use OER to identify what role is needed to access a given service. Once you identify
the role, you can then create a user and assign that particular role to that user and
invoke the service with that user for testing. For our example, we will need a user

FIGURE 15-33. Examine the BPEL process audit trail.

15-ch15.indd 497 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

498 Oracle Fusion Applications Development and Extensibility Handbook

who has the Master Data Management Application Administrator role, which gives
access to Location Service.

 1. Log in to EM where your service is deployed.

 2. Right-click on the server that hosts your service and select the Web Services
menu option as shown in Figure 15-34.

FIGURE 15-34. Web services in Enterprise Manager

15-ch15.indd 498 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 499

 3. Locate the service you are interested in testing from the list and click on the
service as shown in the following illustration. We will use location service as
an example.

 4. The service page shows details about the service, such as operations,
the security policy used by the service, and other configuration details. You
can click on the Web Services Test link at the top of the page as shown in
Figure 15-35.

FIGURE 15-35. Getting to the test service page in Enterprise Manager

15-ch15.indd 499 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

500 Oracle Fusion Applications Development and Extensibility Handbook

 5. On the service test page, choose the Operation createLocation.

 6. Under the security section, choose OWSM Security Policies and select the
right policy for this service as shown in the following illustration. Provide a
username and password for the user who has access to this service.

 7. Under the input arguments section, you can see all the attributes available
that you can input to this service in tree view. You can type in the values for

15-ch15.indd 500 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 501

mandatory attributes per documentation. You can switch to XML view and
enter the following input payload.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns1:createLocation xmlns:ns1="http://xmlns.oracle.com/apps/cdm/foundation/

parties/

locationService/applicationModule/types/">

 <ns1:location xmlns:ns2="http://xmlns.oracle.com/apps/cdm/foundation/

parties/

locationService/">

 <ns2:Country>IN</ns2:Country>

 <ns2:Address1>Address1</ns2:Address1>

 <ns2:City>City</ns2:City>

 <ns2:PostalCode>PostalCode</ns2:PostalCode>

 <ns2:CreatedByModule>AMS</ns2:CreatedByModule>

 </ns1:location>

 </ns1:createLocation>

 </soap:Body>

</soap:Envelope>

 8. Click the Test Web Service button from the top or bottom-right corner of the
page. This will invoke the service with the given username and provide the
result in the Response tab as shown here.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/

envelope/" xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <env:Header>

 <env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Body-2Tplx6O0WK501GGh6ijVKw22">

 <ns0:createLocationResponse xmlns:ns0="http://xmlns.oracle.com/apps/cdm/

foundation/parties/locationService/applicationModule/types/">

 <ns2:result xmlns:ns0="http://xmlns.oracle.com/adf/svc/types/"

xmlns:ns1="http://xmlns.oracle.com/apps/cdm/foundation/parties/

locationService/" xmlns:ns2="http://xmlns.oracle.com/apps/cdm/foundation/parties/

locationService/applicationModule/types/" xmlns:ns3="http://xmlns.oracle.com/apps/

cdm/foundation/parties/

partyService/" xmlns:ns4="http://xmlns.oracle.com/apps/cdm/foundation/parties/

flex/location/" xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:type="ns1:LocationResult">

 <ns1:Value>

 <ns1:LocationId>300100020720793</ns1:LocationId>

 <ns1:LastUpdateDate>2013-06-08T00:37:48.183-07:00

</ns1:LastUpdateDate>

 <ns1:LastUpdatedBy>DHAVAL</ns1:LastUpdatedBy>

 <ns1:CreationDate>2013-06-08T00:37:48.009-07:00

</ns1:CreationDate>

15-ch15.indd 501 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

502 Oracle Fusion Applications Development and Extensibility Handbook

 <ns1:CreatedBy>DHAVAL</ns1:CreatedBy>

 <ns1:LastUpdateLogin>DEA07C1FD59B2F9EE0431120F00A6EA0

</ns1:LastUpdateLogin>

 <ns1:RequestId xsi:nil="true"/>

 <ns1:OrigSystem xsi:nil="true"/>

<ns1:OrigSystemReference>300100020720793

</ns1:OrigSystemReference>

 <ns1:Country>IN</ns1:Country>

 <ns1:Address1>Address1</ns1:Address1>

 <ns1:Address2 xsi:nil="true"/>

 <ns1:Address3 xsi:nil="true"/>

 <ns1:Address4 xsi:nil="true"/>

 <ns1:City>City</ns1:City>

 <ns1:PostalCode>PostalCode</ns1:PostalCode>

 <ns1:State xsi:nil="true"/>

 <ns1:Province xsi:nil="true"/>

 <ns1:County xsi:nil="true"/>

 <ns1:AddressStyle xsi:nil="true"/>

 <ns1:ValidatedFlag>false</ns1:ValidatedFlag>

 <ns1:AddressLinesPhonetic xsi:nil="true"/>

 <ns1:PostalPlus4Code xsi:nil="true"/>

 <ns1:Position xsi:nil="true"/>

 <ns1:LocationDirections xsi:nil="true"/>

 <ns1:AddressEffectiveDate xsi:nil="true"/>

 <ns1:AddressExpirationDate xsi:nil="true"/>

 <ns1:ClliCode xsi:nil="true"/>

 <ns1:Language xsi:nil="true"/>

 <ns1:ShortDescription xsi:nil="true"/>

 <ns1:Description xsi:nil="true"/>

 <ns1:SalesTaxGeocode xsi:nil="true"/>

 <ns1:SalesTaxInsideCityLimits>1</ns1:SalesTaxInsideCityLimits>

 <ns1:FaLocationId xsi:nil="true"/>

 <ns1:ObjectVersionNumber>1</ns1:ObjectVersionNumber>

 <ns1:CreatedByModule>AMS</ns1:CreatedByModule>

 <ns1:ValidationStatusCode xsi:nil="true"/>

 <ns1:DateValidated xsi:nil="true"/>

 <ns1:DoNotValidateFlag xsi:nil="true"/>

 <ns1:Comments xsi:nil="true"/>

 <ns1:HouseType xsi:nil="true"/>

 <ns1:EffectiveDate>2013-06-08</ns1:EffectiveDate>

 <ns1:AddrElementAttribute1 xsi:nil="true"/>

 <ns1:AddrElementAttribute2 xsi:nil="true"/>

 <ns1:AddrElementAttribute3 xsi:nil="true"/>

 <ns1:AddrElementAttribute4 xsi:nil="true"/>

 <ns1:AddrElementAttribute5 xsi:nil="true"/>

15-ch15.indd 502 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Chapter 15: Integration with Fusion Applications 503

 <ns1:Building xsi:nil="true"/>

 <ns1:FloorNumber xsi:nil="true"/>

 <ns1:StatusFlag>true</ns1:StatusFlag>

 <ns1:InternalFlag>false</ns1:InternalFlag>

 <ns1:TimezoneCode xsi:nil="true"/>

 </ns1:Value>

 </ns2:result>

 </ns0:createLocationResponse>

 </env:Body>

</env:Envelope>

How to Change the User in
SOA Composite to Call Services
In our example in the preceding section, we did not specify any user when we
called the service from the BPEL process in the SOA composite. By default, SOA
composites do identity propagation; that is, the composite will invoke the service
with the exact same user identity that resulted in the instantiation of the composite.
In our example, the SOA composite is instantiated by a Create Location event, which
is raised when a user created data in the application UI. The service from the SOA
composite is called with the exact same user. In our example, we are calling the
service from the same Fusion Applications installation, so the integration works
seamlessly. You will be faced with situations many times where you will need to
switch the identity of the user before making the service call from the SOA composite
because the systems you are integrating are not the same. There are two ways to do
this identity switch in the SOA composite.

Using a Hard-Coded Username and Password
If you know the username and password for a user who has access to call a given
service from a given application, you can simply pass that fixed username and
password for calling the service. You can specify the values as properties in the SOA
composite service reference as shown here.

 <binding.ws port="http://xmlns.oracle.com/apps/cdm/foundation/parties/
locationService/applicationModule/
#wsdl.endpoint(LocationService/LocationServiceSoapHttpPort)"
 location="oramds:/apps/oracle/apps/cdm/foundation/parties/
locationService/LocationService.wsdl">
 <wsp:PolicyReference URI="oracle/wss11_saml_token_with_
message_protection_client_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <property name="basicHeaders">credentials</property>
 <property name="basicUsername">dhaval</property>
 <property name="basicPassword">Welcome1</property>
 </binding.ws>

15-ch15.indd 503 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

504 Oracle Fusion Applications Development and Extensibility Handbook

Using Keystore Configuration
The hard-coded way to pass the username and password may not sound secure, and
you may want to use a more robust mechanism to do the user switch. Please read
Oracle Fusion Middleware Security and Administrator’s Guide for Web Services to
understand how to generate the csf-key to use with a Web service. This is a standard
way to generate secured tokens that can be used to call a service, and it will work
only for a given server configuration. Once you have the csf-key generated from
your security administrator, you can use it in your SOA composite as shown here.

 <binding.ws port="http://xmlns.oracle.com/apps/cdm/foundation/parties/
locationService/applicationModule/
#wsdl.endpoint(LocationService/LocationServiceSoapHttpPort)"
 location="oramds:/apps/oracle/apps/cdm/foundation/parties/
locationService/LocationService.wsdl">
 <wsp:PolicyReference URI="oracle/wss11_saml_token_with_message_protection_
client_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <property name="csf-key" many="false">your-csf-key</property>
 </binding.ws>

Summary
In this chapter, we discussed the different integration options available for Fusion
Applications for inbound and outbound interaction. We discussed how to discover
the assets using OER. We discussed various service options available in Fusion
Applications and how the service-oriented architecture can be used to do integrations
using business events and Web services. We also walked through a complete end-
to-end example of integrating two applications for data sync. We examined how to
deploy the SOA composite and how to test and examine the flow using Enterprise
Manager. Finally, we talked about how to switch users for calling services from the
SOA composite and how to test Fusion Applications Web services.

15-ch15.indd 504 11/12/13 12:44 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

A

abstract roles, 73
actions

Application Composer, 195
Business Process Flow, 195
defining, 91–94
E-Mail Notification, 195
entity objects, 91
Field Updates, 195
Outbound Message, 195
permissible, 77
resources, 92
security, 94
types of, 195

Actions and Links feature, 146
ADF (Application Development Framework),

237–293
application navigation flow, 264–270
application planning, 240
business components, 216–224, 246–255,

311, 312
creating custom applications, 238–239
defining application pages, 270–285
deploying applications, 292–293
implementing business logic, 255–263
integrating applications, 292–293
MDS and, 339
OBIEE and, 388–396
securing applications, 76, 289–291
skinning. See ADF skinning
SOA and, 311

ADF Business Component (ADFbc),
311, 312

ADF components, 115
ADF Faces skinning, 434, 438–439, 442
ADF libraries, 292–293
ADF metadata, 391–392
ADF screens, 388
ADF Services, 456, 465–468
ADF Skin Editor, 440–441, 444–445, 448
ADF skinning, 433–452

ADF Faces component, 434,
438–439, 442

ADF Skin Editor, 440–441,
444–445, 448

ApplCore Skin Update extension, 441
Cascading Style Sheets, 435–438, 449
creating custom skin, 444–448
deployment options, 448–452
example, 444–452
introduction to, 434–439
selectors, 434–439, 442–447
Skin Extension Bundle, 440
skin keys, 439
tools/resources, 440–444

ADF view objects, 352, 388, 390,
395–396

ADF View Objects data set, 352
ADFbc (ADF Business Component),

311, 312
adf-config.xml file, 335–339
Admin Servers, 4–5, 6
Admin users, 81–84

Index

505

16_Index.indd 505 11/11/13 12:23 PM

506 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

administration
administrative roles, 80–82
Enterprise Manager.

See Enterprise Manager
Enterprise Scheduling Service, 410–417
OBI Admin Tool, 394–395

Advance Queue (AQ) feature, 466
alternative keys, 468
AME (Approvals Management) engine, 321
AMX (Approval Management Extensions), 321
Analysis Editor, 379
analysis graphs, 396–399
analysis reports, 396–399
analytical reports, 115, 352
analytics, 383–407

BI Publisher. See BI Publisher
cross-subject analysis, 406
cross–subject area queries, 405–406
dimensions, 385–386
examples, 396–407
facts, 385–386
multiple-result-set analysis, 406
OBIA, 384
OBIEE. See OBIEE
OTBI. See OTBI
overview, 384
security, 393–396
single-result-set analysis, 406

anonymous users, 76–77
anonymous-role, 76–77
APM (Authorization Policy Manager), 70–71

adding permissions, 291
components, 86–104
defining Authorization policies, 71
described, 70
duty roles, 71
entitlements, 71
resources in, 70
searching for components, 86–87, 90
securing components, 86, 87, 88

applcore (Applications Core) library, 12
ApplCore Skin Update extension, 441
application artifacts. See artifacts
Application Composer, 141–200. See also

CRM applications
accessing, 142
actions, 195
adding fields to object pages, 150–153
adding fields to objects, 146–150
application choice list, 143
business processes, 144, 198
custom child objects, 144, 182,

183–184
custom objects, 143
custom subject areas, 143
debugging server scripts, 198–199

defining buttons/links on object pages,
170–172

defining saved searches for objects, 146,
172–173

defining server scripts for objects,
154–170

e-mail templates, 143, 193–194
end-user personalization, 144
Expression Builder, 154–156
features, 143–144, 146
global functions, 144, 164–165
home page, 143–144
import/export interface, 144, 199
listing objects in, 144, 145
mobile pages, 144
object relationships, 143, 182–183
object structure, 144–146
Object Workflow, 144, 195–197, 463
overview, 142–144
role security, 143
run time messages, 144, 199
standard objects, 143
subtab content, 184–189
top-level custom objects, 144,

174–181, 182
tree node content, 189–191

Application Development Framework.
See ADF

application extensions, 19–20
application pages. See also Page Composer

adding attributes to, 229–232
adding new content to, 115–120
buttons on, 170–172
changing layout, 113–114
customization modes, 111–112
customizing existing pages, 224–232
customizing fields, 121–126
customizing regions, 126–132
customizing search feature, 224–228
defining pages in task flow, 270–285
end-user personalization, 113, 144
identifying artifacts to customize,

208–216
links on. See links
mobile, 144
overview, 209
task flows, 75, 209
what can be customized, 110

application roles, 73
application servers, 480–482
applications. See also Application Composer;

Fusion Applications
ADF. See ADF
artifacts. See artifacts
composite, 472–475
creating in Fusion Applications, 423

16_Index.indd 506 11/11/13 12:23 PM

Index 507

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

creating in Manage Taxonomy Hierarchy,
421–423

CRM. See CRM applications
enterprise, 10, 65, 434
navigation flow, 264–270
top-level custom objects, 144,

174–181, 182
Applications Core (applcore) library, 12
Applications RCU (Applications Repository

Creation Utility), 14
Applications Repository Creation Utility

(Applications RCU), 14
approval composites, 314–320
approval groups, 323–331
Approval Management Extensions (AMX), 321
approval rules, 323, 327–331
Approval Workflow (AWE) engine, 321
approvals management, 321–331
Approvals Management (AME) engine, 321
AQ (Advance Queue) feature, 466
Aqualogic BPM, 296
artifacts

adding permissions to, 291
customized, 36, 37, 208–216
promoting previous version, 38
searching for, 86–87, 90
securing, 86, 87, 88

assets, 456–458
assignment rules, 314–320
asynchronous service calls, 466–467
attachments, 11
attributes, 229–232. See also fields
authenticated users, 76–77
authentication

corporate, 74
described, 68, 74
in Fusion Applications, 74–75
local, 74
in traditional applications, 74

authorization
described, 68, 75
in Fusion Applications, 75–77

authorization checks, 75, 76
Authorization policies, 71
Authorization Policy Manager. See APM
AWE (Approval Workflow) engine, 321

B

B2B (Business-to-Business) engine, 310
BAM (Business Activity Monitoring), 310
BI Administration Tool. See OBIEE
BI Analysis data set, 352
BI Composer, 380
BI Dashboard, 388

BI Publisher
bursting in, 358–361
data security and, 102
formats supported, 358–361
reporting. See BI Publisher reporting
system variables, 376–377
templates, 361, 370–375
user information, 376–377

BI Publisher reporting. See also reports
additional techniques, 379–382
Analysis Editor, 379
BI Composer, 380
data models, 349–361
data sets, 351–353, 363–367
example, 362–379
Financial Reporting Studio, 382
Mobile BI, 380–381
OBIEE technology, 379
Oracle Hyperion tools, 382
report architecture, 348–361
Smart View tool, 382

bounded task flows, 75, 209, 264–265
BPEL (Business Process Execution Language),

296, 311, 314
BPEL batch jobs, 310–311
BPEL engine, 298, 299, 310
BPEL entity variables, 312
BPEL flow, 484–494
BPEL processes, 311, 475–479, 482, 484–494
BPM (Business Process Management), 295–308

design tools, 297
example of, 304–307
in Fusion Applications, 296–303
vs. Oracle SOA, 296
overview, 296–303
Process Composer, 297, 299, 302–303
templates, 304–307

BPM Process Composer, 297, 299, 302–303
BPM Studio, 297
BPM Suite, 296, 314
BPM Worklist, 320, 324–325
BPMN (Business Process Model and Notation),

296, 298, 314
BPMN components, 298–307
BPMN design tools, 299–303
BPMN engine, 297, 298, 299
BPMN processes, 299, 304, 306
browser tools/add-ons, 442–444
Bulk Export interfaces, 464–465
bulk imports, 468–469
bursting definitions, 358–361
Business Activity Monitoring (BAM), 310
business components

adding new validation, 219–224
ADF, 216–224, 246–255, 311, 312
customizing, 216–224

16_Index.indd 507 11/11/13 12:23 PM

508 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

business components (cont.)
defining, 246–255
modifying LOV field, 216–219

Business Components diagram, 249
business entities, 386–387
business events, 311, 457, 482
business logic, 255–263
Business Model and Mapping layer, 386–387
Business Process Execution Language. See BPEL
Business Process Flow action, 195
Business Process Management. See BPM
Business Process Model and Notation.

See BPMN
business processes, 144, 198
Business-to-Business (B2B) engine, 310
buttons, defining, 170–172

C

call services, 503–504
Cascading Style Sheets (CSS), 435–438, 449
categories, 55
CEP (Complex Event Processing), 310
Chart of Accounts, 10, 63
child objects, 144, 182, 183–184
choice list relationships, 182
CLAF (Custom Look and Feel), 434, 440
clusters, 5–6
Collaxa, 296
columns, 61–62, 114, 121, 255
Complex Event Processing (CEP), 310
component selectors, 439
composite services, 456–457
composite.xml file, 493
concrete service URL, 494–496
Concurrent Request Managers, 12
conditions, 91, 104–105, 195
Configure ADF Security Wizard, 76–77
config.xml file, 7
connection pools, 351
content

child objects, 183
subtabs, 184–189
tree nodes, 189–191
types of, 115
from unrelated objects, 183
Web, 183

context
descriptive flexfields, 41–52
extensible flexfields, 52–58
key flexfields, 59

context field, 41
context links, 183
Crawler plugins, 13

Create, Read, Update, and Delete (CRUD)
operations, 456

CRM (Customer Relationship Management), 10
CRM Application Composer. See Application

Composer
CRM applications. See also Application

Composer; applications
extensions, 19–20
JDeveloper and, 202
Select mode, 112

CRM objects, 142
CRM products, 142
cross-references, 467–468
cross–subject area queries, 405–406
cross-validation rules (CVRs), 63–64
CRUD (Create, Read, Update, and Delete)

operations, 456
csf-key, 504
CSS (Cascading Style Sheets), 435–438, 449
CSV files, 394
Currency type, 147
Custom Look and Feel (CLAF), 434, 440
custom objects

child objects, 144, 182, 183–184
listing, 144, 145
managing, 143
securing, 192–193

Custom Objects node, 143, 144
custom subject areas, 143
Customer Center application, 480
Customer Relationship Management (CRM), 10
customization layers, 23–27, 28
Customization Manager, 36–38
customization XML, 23
customizations, 17–38. See also personalization

application extensions, 19–20
artifacts, 36, 37, 208–216
deleting, 36
design-time, 20–21, 331–345
development lifecycle, 35–36
displaying, 36, 37
existing application pages, 224–232
existing business components, 216–224
importing/exporting, 33–34
in JDeveloper. See

JDeveloper customizations
managing, 27–38
MDS, 22–25, 28, 342–344
menus, 138–139
publishing, 30
resetting to original state, 136–137
run-time behavior, 19, 22–27
run-time SOA components, 320–331
sandbox environment, 28–35
types of, 18–22
uploading/downloading, 36

16_Index.indd 508 11/11/13 12:23 PM

Index 509

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

customizing existing application pages,
224–232

customizing regions, 126–132
CVRs (cross-validation rules), 63–64

D

data
analyzing. See analytics
hierarchies, 11
list of values, 216–219
location, 484–494
reference, 97–98
security, 77, 395–396

data granularity, 95
data model diagrams, 458
data model editor, 348, 349–350, 354
data models, 349–361, 362
data roles, 73, 89–90, 95–98, 99
data sets, 351–353, 363–367
data sources, 351–353
database resources. See also resources

defining actions on, 92–94
defining policies on, 94
names, 92
securing, 88–94

databases. See also Oracle Database
resources. See database resources
schemas. See schemas
transactional, 14
virtual, 99–104

date type parameter, 358
debugging server scripts, 198–199
declarations, 436
descriptive flexfields (DFFs), 40–52
Design view, 111
design-time SOA components, 20–21, 331–345
developer environment, setup, 202–208
development lifecycle, 35–36
DFFs (descriptive flexfields), 40–52
dimension tables, 385–386, 407
dimensions, 95, 385–386, 406
direct conflicts, 30
directories, as data sources, 351
duty roles, 71, 73, 192–193
dynamic choice list, 147, 182

E

ear (Enterprise Achieve) file, 292–293
E-Business, 106, 311
ECSF (Oracle Enterprise Crawl and Search

Framework), 11, 13–14
EDLs (Event Definitions), 463, 470–471

EDN (Event Delivery Network), 310, 457
EFFs (extensible flexfields), 53–58
EM. See Enterprise Manager
e-mail

responses to events, 195, 196–197
specifying address, 196
templates, 143, 193–194

E-Mail Notification action, 195
E-Mail Templates feature, 143, 193–194
end-user personalization, 113, 144
Enterprise Achieve (ear) file, 292–293
enterprise applications, 10, 65, 434
Enterprise Crawl and Search Framework (ECSF),

11, 13–14
Enterprise Manager (EM)

administration tools, 15
considerations, 15
Fusion Applications Control, 15,

320, 333
Grid Control, 3, 15
security and, 468

Enterprise Manager (EM) Control, 13
enterprise roles, 73
Enterprise Scheduler. See ESS
entitlements, 70, 71, 75. See also

permissions; privileges
entity associations, 247–252
entity objects (EOs)

actions, 91–92
adding, 247–248
in ADFbc components, 311
considerations, 209
identifying, 209
multilanguage-based, 92
non-multilanguage-based, 92
securing, 77, 86, 93

EOs. See entity objects
error buffer, 428
errors

cross-validation rules, 63–64
denied access, 108
file imports, 469
sandboxes, 30, 31
validation, 261–263
validation rules, 223–224

ESS (Enterprise Scheduling Service), 409–432
administration pages, 411–412, 418
architecture, 417–419
creating jobs, 418, 426–432
custom jobs, 420–432
described, 410
examples, 420–432
in Fusion Applications, 410–420
JDeveloper and, 418, 426–427
job definitions/states, 412
job log/output files, 413–415

16_Index.indd 509 11/11/13 12:23 PM

510 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

ESS (Enterprise Scheduling Service), (cont.)
managing/monitoring jobs, 411–412,

428–429
Metadata Services, 419–420, 424–426
OER and, 457
overview, developers, 417–420
overview, general, 12–13
overview, system administrators,

410–417
resources, 424–425
running jobs, 430–432
scheduling jobs, 430–432
searching for jobs, 425, 428,

430, 431
security, 424–426

ESS database schema, 415–417
ESS database tables, 415–417
ESS Monitor UI, 13
ESS Server Logging, 415
ESS Submission Request Screen (SRS) UI, 13
ESSAPP JEE application, 410
Essbase, 14, 379, 382, 389
Essbase cubes, 389
Event Definitions (EDLs), 463, 470–471
Event Delivery Network (EDN), 310, 457
event subscriptions, 482–484
event triggers, 354
events

business, 311, 457, 482
responses to, 195, 196–197
routing to processes, 475–479
SOA integration, 311
subscribing to, 472–475

Excel files, 353
export interface, 144, 199
exporting

Bulk Export interfaces, 464–465
customizations, 33–34
SOA composites, 312–314, 315, 333

Expression Builder, 154–156
Extensibility Guide, 302
extensible flexfields (EFFs), 53–58
external layer, 26
external roles, 73, 97

F

fact tables, 386, 388
facts, 385–386
federated querying, 387
Field Updates action, 195
fields. See also flexfields

adding to application pages, 150–153
adding to objects, 146–150

calculating default value for, 156–157
customizing, 121–126
defining validation rules for, 159–161
formula, 147–148, 156
making conditionally updateable,

158–159
making mandatory, 157–158
modifying list of values for, 216–219
percentage values, 147

Fields feature, 146
file data source, 351
files. See also specific file names

CSV, 394
ear, 292–293
Excel, 353
importing, 469
jar, 212–213, 448
log, 413–415
RPD, 384–388, 390
WSDL, 322, 456
XML, 23, 353

Financial Reporting Studio, 382
flexfield sandbox, 29, 65
flexfields, 39–66. See also fields

configuring, 41–58
cross-validation rules, 63–64
deployment of, 65
described, 11, 40, 354
descriptive flexfields, 40–52
extensible, 53–58
including in OTBI, 407
key, 58–64
registering, 52
using in reports, 354–355

FND_CSS_SKIN_FAMILY option, 449
FND_GRANTS table, 395–396
formula fields, 147–148, 156
FSM (Functional Setup Manager), 323
function security, 75–77, 394–395
Functional Setup Manager (FSM), 323
functions

global, 144, 164–165
Groovy, 155
object, 163

Fusion Application integration, 292–293,
453–504

changing users to call services, 503–504
discovering integration assets, 458–462
inbound integration patterns, 465–469
Oracle Enterprise Repository. See OER
outbound integration patterns, 463–465
overview, 454
testing integration flow, 496–497
with UI Shell, 285–289
using standard patterns, 469–497

16_Index.indd 510 11/11/13 12:23 PM

Index 511

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Fusion Applications. See also applications
in ADF. See ADF
approvals management, 321–331
common components, 186
cross-references in, 467–468
customizing. See customizations
defining new business components,

246–255
defining new schema, 241–245
extensions. See ADF
HCM Domain, 5, 6
implementing business logic, 255–263
integration with. See Fusion

Application integration
layers for, 386–388
navigation flow, 264–270
planning for, 240
product families, 7–10
releases, 202–203
run-time behavior, 22–27
security in. See Fusion

Applications security
technical architecture, 2–15
updates, 205–206
Web Services. See Web services

Fusion Applications Control, 15, 320, 333
Fusion Applications Domain, 13
Fusion Applications Extensibility Guide, 302
Fusion Applications security, 67–108.

See also security
authentication, 74–75
authorization, 75–77
Authorization Policy Manager.

See APM
custom user interface pages, 87
data, 77
database resources, 88–94
function, 75–77
high-level components in, 68–72
Oracle E-Business Suite, 106
Oracle Identity Manager, 69–70
Oracle Internet Directory, 69
Oracle Platform Security Services,

71–72
Role-Based Access Control, 72–74
securing applications, 76, 289–291
securing resources, 88–94
Web services, 106–108

Fusion database schema, 427
Fusion Middleware

infrastructure components, 10–14
standard components, 2–7

FUSION_ORA_ESS schema,
415–417

G

General Ledger (GL) Journal Approvals process,
312–320, 323–331

GL (General Ledger) Journal Approvals process,
312–320, 323–331

global functions, 144, 164–165
global layer, 26, 27
global selectors, 439
graphs, 396–399
GRC (Governance, Risk, and Compliance), 10
Groovy expressions, 76
Groovy language, 144, 154
Groovy scripts, 198–199

H

HCM (Human Capital Management)
authorization and, 75
auto provisioning of roles in,

104–105
defining hierarchies, 322
product family, 9–10

HCM components, 115
HcmCountry layer, 27
HCMDomain, 5, 6
HcmOrganization layer, 27
hierarchies

defining, 322
nesting, 72
roles, 72–74, 77–79, 82, 83

HomePageApp, 450–451
HTML code, 361, 434–444
HTML documents, 435
HTTP (XML Feed) data set, 353
Human Capital Management. See HCM
Hyperion tools, 382
hyperlinks. See links

I

IDM Reconciliation Process,
84–85

implicit personalization, 113
import interface, 144, 199
importing

bulk imports, 468–469
composites, 333–335
customizations, 33–34
files, 469
Manage Import Activities task, 469

16_Index.indd 511 11/11/13 12:23 PM

512 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

inbound integration patterns, 465–469
indirect conflicts, 30
instance sets, 91
internal layer, 26–27, 28
Invoke activity, 487–490

J

jar files, 212–213, 448
Java Enterprise Edition (JEE), 448
Java Naming and Directory

Interface (JNDI), 351
JavaServer Faces (JSF), 434
jazn-data.xml file, 76, 87, 88, 89, 291
JDBC Connection, 351
JDBC drivers, 351
JDeveloper, 201–235

adding attributes to pages, 229–232
adding validation, 219–224
choosing default role, 204
Configure ADF Security Wizard,

76–77
configuring security policies, 76
connecting to BPM MDS repository,

300–302
CRM applications and, 202
customizations. See

JDeveloper customizations
defining new schema, 241–245
environment variables, 204
ESS and, 418, 426–427
importing composites into, 333–335
launching, 204
modifying field LOV, 216–219
setting up, 202–208, 238–240
updates, 205–206
versions, 202
working with ADF, 238–240

JDeveloper customizations
application artifacts, 208–216
application page search, 224–228
application planning, 240
considerations, 13, 21
customizing/extending SOA composites,

332–339
deploying, 232–235
existing application pages, 224–232
existing business components,

216–224
JEE (Java Enterprise Edition), 448
JNDI (Java Naming and Directory Interface), 351
job roles

considerations, 87, 89
inheriting permissions, 73

mapping to, 87
in OTBI, 393–395
templates, 86, 89, 95–104

jobs
described, 410
ESS. See ESS
PL/SQL, 426–432
roles. See job roles

joins
complex, 390–391, 405
in OBIEE, 389–393

journal batches, 314, 317, 318,
327–331

JSF (JavaServer Faces), 434
JSF pages (JSPX), 209, 285–286, 291
JSPX (JSF pages), 209, 285–286, 291

K

key flexfields (KFFs), 58–64
keystore, 107, 504
keytool command, 107
KFFs (key flexfields), 58–64

L

layers
customization, 23–27, 28
global, 27, 28

LDAP (Lightweight Directory Access Protocol),
69, 353

LDAP Query data sets, 353
LDAP Rule Create and Update

Reconciliation, 85
LDAP server data source, 351
LDAP servers, 351
lifecycle, development, 35–36
Lightweight Directory Access protocol.

See LDAP
links

context, 183
defining, 170–172
properties, 118–121
reports, 347

list of values (LOV), 216–219, 273–274,
355–356

location data, 484–494
log files, 413–415
logging, enabling, 198–199
logical tables, 387
logos, 448
LOV (list of values), 216–219, 273–274,

355–356

16_Index.indd 512 11/11/13 12:23 PM

Index 513

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

M

Manage Custom Enterprise Scheduler Jobs
taskflow, 418, 428–429

Manage Import Activities task, 469
Manage Taxonomy Hierarchy task, 421–423
managed servers, 4, 5–7
many-to-many relationships, 182
MAR (Metadata Achieve) profile, 232–235
MDB listener, 467
MDS (Metadata Services Repository)

ADF and, 339
BPM, 299–302
considerations, 22, 23
customizations, 22–25, 28, 342–344
defining connections to, 335–339,

470–471
ESS MDS, 419–420, 424–426
overview, 22–23
recording customizations into, 342–344
sandboxes and, 28–31, 33
SOA and, 335–339, 342–344, 470–471

MDS namespaces, 424–426
MDX Query data set, 352
measures, 386
Mediator, 472–473
menus, customizing, 138–139
metadata. See also MDS

ADF, 391–392
conflicts, 30–31
premapped, 396

Metadata Achieve (MAR) profile, 232–235
Metadata Services Repository. See MDS
Mobile BI, 380–381
mobile pages, 144

N

namespaces, 424–426, 487
Navigator menu, 138–139
newView function, 165
node manager, 6, 7

O

OA (Oracle Applications) Framework, 434
OASIS, 298
OBI Admin Tool, 394–395
OBIA (Oracle Business Intelligence

Applications), 384
OBIEE (Oracle Business Intelligence Enterprise

Edition), 384–396
ADF and, 388–396
downloading correct version, 384

importing custom objects into, 399–405
introduction to, 384–388
RPD files, 384–388
using in Fusion Applications, 388–396

OBIEE Broker, 389–390, 400–404
OBIEE repository, 379
object functions, 163
object pages

defining buttons/links on, 170–172
top-level custom objects, 144, 174–181,

182
object trees, 189–191
Object Workflow feature, 144, 195–197, 463
objects

adding fields to, 146–150
child, 144, 182, 183–184
common components, 186
CRM, 142
custom. See custom objects
defining saved searches for, 146,

172–173
defining server scripts for, 154–170
defining triggers for, 166–170
defining validation rules for, 161–163
extending default processing for,

166–170
importing/exporting, 144, 199
listed in Application Composer, 144, 145
relationships between, 143, 182–183
standard, 143, 144, 145
structure, 144–146
workflow, 144, 195–197, 463

ODSM (Oracle Directory Services Manager), 69
OER (Oracle Enterprise Repository)

compatibility considerations, 455
data model diagrams, 458
discovering integration assets in,

458–462
logging in, 459
overview, 454–455
tables in, 457
types of assets in, 456–458
views in, 457

OER home page, 459
OES (Oracle Entitlement Server), 70, 75
OID (Oracle Internet Directory), 69
OIM (Oracle Identity Manager)

creating super user, 77–83
overview, 69–70
role provisioning and, 105

OLAP data source, 351
OLAP servers, 351
OPSS (Oracle Platform Security Services),

71–72
Oracle Application Composer. See

Application Composer

16_Index.indd 513 11/11/13 12:23 PM

514 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

Oracle Application Development Framework.
See ADF

Oracle Applications (OA) Framework, 434
Oracle BI Administration Tool. See OBIEE
Oracle BPEL Process Manager, 296
Oracle BPM. See BPM
Oracle Business Intelligence Applications

(OBIA), 384
Oracle Business Intelligence Enterprise Edition.

See OBIEE
Oracle Database. See also databases

considerations, 14
illustrated, 3
MDS in, 24, 25, 420
monitoring of, 15
VPD feature, 99–104

oracle directory, 22
Oracle Directory Services Manager (ODSM), 69
Oracle E-Business Suite, 106, 311
Oracle EM Grid Control, 15
Oracle Enterprise Crawl and Search Framework

(ECSF), 11, 13–14
Oracle Enterprise Manager. See Enterprise

Manager
Oracle Enterprise Repository. See OER
Oracle Enterprise Scheduler. See ESS
Oracle Entitlement Server (OES), 70, 75
Oracle Essbase, 14, 379, 382, 389
Oracle Fusion Applications. See

Fusion Applications
Oracle Fusion Applications Repository Creation

Utility (Applications RCU), 14
Oracle Fusion Financials, 10
Oracle Fusion Middleware. See Fusion

Middleware
Oracle Fusion Middleware Extensions for

Applications, 11–12
Oracle Fusion Web Services. See Web Services
Oracle Hyperion tools, 382
Oracle Identity Management components, 14
Oracle Identity Manager (OIM), 69–70
Oracle Internet Directory (OID), 69
Oracle JDeveloper. See JDeveloper
Oracle Page Composer. See Page Composer
Oracle Platform Security Services (OPSS),

71–72
Oracle Secure Enterprise Search (Oracle SES),

13–14
Oracle SOA. See SOA
Oracle Technology Network (OTN), 440
Oracle Transactional Business Intelligence.

See OTBI
Oracle Web Center components, 115
Oracle Web Service Manager. See OWSM
Oracle WebLogic Server. See

WebLogic Server

OTBI (Oracle Transactional
Business Intelligence)

architecture/concepts, 384–396
described, 379, 384
examples, 396–407
including flexfields in, 407
key features, 388–389
query optimization in, 392–393
security in, 393–396

OTBI reports
development process for, 389–393
graphs, 396–399
importing custom objects, 399–405
sample, 396
simple analysis report, 396–399

OTN (Oracle Technology Network), 440
outbound integration patterns, 463–465
Outbound Message action, 195
OWSM (Oracle Web Service Manager), 468
OWSM Security Policies, 500

P

Page Composer, 109–140. See also
application pages

adding new content to page, 115–120
changing page layout, 113–114
customization modes, 111–112
customizing fields, 121–126
customizing Navigator menu, 138–139
customizing regions, 126–132
customizing Task pane, 133–136
Design view mode, 111
end-user personalization, 113
hyperlink properties, 118–121
resetting customization to original state,

136–137
Select mode, 112
Source view mode, 111–112,

126–130, 133
types of content supported, 115
what can be customized, 110

pages. See application pages; Page Composer
Pages feature, 146
parameter types, 356–358
parent-child relationships, 182
passwords, 68, 74, 75, 106, 503
patching, 344–345
patterns

inbound integration, 465–469
outbound integration, 463–465
standard, 469–497

Percentage type, 147
percentage values, 147
permission sets, 75

16_Index.indd 514 11/11/13 12:23 PM

Index 515

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

permissions
adding to application artifacts, 291
data security, 77
function security, 75–77, 394–395
Oracle Internet Directory, 69

persdef directory, 22
personalization. See also customization

in Application Composer, 144
composer, 113
implicit, 113
overview, 18–19
in Page Composer, 113
user, 113

Physical layer, 386–392, 399
physical tables, 387
PL/SQL code, 354
PL/SQL jobs, 426–432
policies

authorization, 71
database resources, 94
roles, 97
security, 76, 193, 491–492, 500

policy store, 76
polymorphic view objects, 50–51
portlets, 115
PPM (Project Portfolio Management), 10
Presentation layer, 387–388
presentation tables, 387–388
primary keys, 90, 91, 100, 467–468
privileges, 393–396. See also permissions
product family layer, 26, 28
product layer, 26, 28
Project Portfolio Management (PPM), 10
publishing, 30, 34–35

Q

queries
cross–subject area, 405–406
data sets based on, 352, 353
federated, 387

query optimization, 392–393

R

RBAC (Role-Based Access Control), 72–74
reference data, shared, 97–98
reference relationships, 182
regions, 126–132
relationships

choice list, 182
custom, 143
described, 182
many-to-many, 182

between objects, 143, 182–183
parent-child, 182
reference, 182
standard, 143, 182
viewing all, 183

reports, 347–382. See also BI Publisher
reporting

analysis, 396–399
analytical, 115, 352
creating, 349–350
example, 362–379
joining two subject areas,

405–406
linking data, 347
list of values in, 354, 355–356
mobile platform, 380–381
OTBI. See OTBI reports
output, 361
parameters, 356–358
roles and, 366, 372, 377
running, 374, 376
saving, 370
templates, 361, 370–375, 377–379
types of, 349–350
using flexfields in, 354–355

Resource Palette, 474
resource types, 70
resources. See also database resources

in APM, 70
described, 70
entitlements for, 71
for ESS jobs, 424–425
securing, 88–94

rich client demos, 442
role layer, 26, 28
Role-Based Access Control (RBAC), 72–74
roles

abstract roles, 73
access control, 72–74
administrative roles, 80–82
anonymous, 76–77
application roles, 73
auto provisioning in HCM,

104–105
creating, 78–84
data roles, 73, 89–90, 95–98, 99
data source access, 351
dimension, 97
duty roles, 71, 73, 192–193
enterprise roles, 73
external roles, 73, 97
hierarchy, 72–74, 77–79, 82, 83
inheriting existing roles, 78–79
job. See job roles
naming, 97
policies, 97

16_Index.indd 515 11/11/13 12:23 PM

516 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

roles (cont.)
reports, 366, 372, 377
security, 143, 192–193
templates, 86, 89, 95–104
types of, 73

.rpd extension, 384
RPD files, 384–388, 390
rules

approval, 323, 327–331
business, 259–260
security, 143
validation. See validation rules

run time messages, 144, 199
Run User and Roles Synchronization Process,

84–85
run-time behavior, 19, 22–27
run-time engines, 297
run-time SOA components, 320–331

S

SAML tokens, 107
Sandbox environment, 28–35
sandboxes

activating, 32
conflicts, 30–31
errors, 30, 31
flexfield, 29, 65
guidelines, 30–31
managing, 31–35
metadata, 29
migrating data, 33–34
multiple, 29–31
publishing, 30, 34–35
security, 29
setting up, 31–33
test, 29–30
types of, 29–30

saved searches, 146, 172–173
SCA (Service Component Architecture),

296, 298
scheduled processes, 457
schemas

application-specific, 14
defining, 241–245
ESS database, 415–417
Fusion, 427
security, 29
star, 396

SCM (Supply Chain Management), 10
scripts

accessing view objects, 165–166
enabling logging in, 198–199
field-level, 154
generic-level, 154
Groovy. See Groovy scripts

object-level, 154
server. See server scripts
writing in Expression Builder,

154–156
SDO specification, 312
SDOs (Service Data Objects),

311, 456
search page, 224–228, 272, 277
searches

APM components, 86–87, 90
in Application Composer, 146, 172–173
application page search, 224–228
artifacts, 86–87, 90
ECSF, 11, 13–14
ESS jobs, 425, 428, 430, 431
objects, 146, 172–173
Oracle SES, 13–14
saved searches for objects, 146,

172–173
secured tokens, 504
security. See also Fusion Applications security

actions, 94
analytics, 393–396
authentication. See authentication
authorization. See authorization
BI Publisher and, 102
coarse-grained, 70
custom objects, 192–193
data, 77, 395–396
ESS, 424–426
fine-grained, 70
function, 75–77, 394–395
OTBI, 393–396
passwords, 68, 74, 75, 106, 503
permissions. See permissions
relationships between components, 104
roles, 143, 192–193
view objects, 388
Web services, 468

Security plugins, 13
security policies, 76, 193, 491–492, 500
Security Reference Implementation, 87
security rules, 143
security sandbox, 29
Select mode, 112
selectors, 434–439, 442–447
server scripts

debugging, 198–199
defining for objects, 154–170
described, 146, 154

servers
Admin, 4–5, 6
application, 480–482
LDAP, 351
managed, 4, 5–7
OLAP, 351
Oracle Entitlement Server, 70, 75

16_Index.indd 516 11/12/13 11:23 AM

Index 517

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

scripts. See server scripts
WebLogic. See WebLogic Server

service calls, 465–467
Service Component Architecture (SCA),

296, 298
Service Data Objects. See SDOs
Service Oriented Architecture. See SOA
service request application

creating in ADF, 237–294
creating in Application Composer,

141–200
sessiondef directory, 22
SetIDs, 97–98
site layer, 26, 28
Skin Extension Bundle, 440
skin keys, 439
skins/skinning, 434, 438. See also ADF skinning
Smart View tool, 382
SOA (Service Oriented Architecture),

69, 310, 311
SOA components

customization vs. extension, 332
design-time customization, 20–21,

331–345
run-time customization, 320–331

SOA Composer, 320
SOA composite services, 456–457
SOA composites, 298

accessing, 312–314
ADF applications integration, 311–312
approvals management, 314–320
assignment rules, 314–320
changing to call services, 503–504
customizing/extending, 332–345
defining, 472–475
deploying, 344, 494–496
exporting, 312–314, 315, 333
extending, 332–339
importing, 333–335
interaction patterns, 310–320
MDS and, 335–339, 342–344,

470–471
patching, 344–345
synchronous, 312
upgrading, 344–345

SOA Suite, 296, 310, 321, 323, 468
Source view mode, 111–112, 126–130, 133
SQL Bypass feature, 392–393, 394
SQL Query data set, 352
SRS (ESS Submission Request Screen) UI, 13
standard objects, 143, 144, 145
Standard Objects node, 143, 144
standard relationships, 182
stored procedures, 427–428
style classes, 439
style sheets, 435–438, 449

subject areas, 387
subtab content, 184–189
super users, 77–85
Supply Chain Management (SCM), 10
surrogate key, 385–386
synchronization processes

IDM Reconciliation Process, 84–85
Run User and Roles Synchronization

Process, 84–85
synchronous services, 465

T

tables
appending WHERE clauses to,

99–104
custom, 396, 399
dimension, 385–386, 388, 407
ESS, 415–417
fact, 386, 388
logical, 387
in OER, 457
physical, 387
presentation, 387–388

Task Creation action, 195
task flows (TFs)

accessing frequently used, 133
bounded, 75, 209, 264–265
defining, 264–270
defining application pages in,

270–285
securing, 75
unbounded, 75

Task pane, 133–136
task properties, 133–136
taxonomy, 423
templates

BPM, 302–307
default, 302
e-mail, 143, 193–194
project, 302
reports, 361, 370–375, 377–379
roles, 86, 89, 95–104

test sandbox, 29–30
TFs. See task flows
top-level custom objects, 144,

174–181, 182
transactional database, 14
tree nodes, 189–191
tree structures, 11
triggers

defining, 166–170
event, 354

troubleshooting
Web services grants, 108

16_Index.indd 517 11/11/13 12:23 PM

518 Oracle Fusion Applications Development and Extensibility Handbook

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

U

UI Hints, 226, 271, 272, 274, 275
UI Shell

described, 11
integrating applications with, 285–289

UIX (User Interface XML) technology, 434
unbounded task flows, 75
updates, 205–206
upgrades, 344–345
URLs, 494–496
user credentials, 69
user groups, 69
User Interface XML (UIX) technology, 434
user layer, 27, 28
usernames, 503
users

Admin, 81–84
anonymous, 76–77
authenticated, 76–77
changing to call services, 503–504
passwords, 68, 74, 75, 106, 503
personalizations, 113, 144
super, 77–85
usernames, 503

utility code, 164–165

V

validation
adding on business unit, 219–224
cross-validation rules, 63–64
error messages, 261–263

validation rules
cross-validation rules, 63–64
defining for fields, 159–161
defining for objects, 161–163

value sets, 41, 42–44, 63, 407
view objects (VOs)

accessing programmatically, 165–166
ADF, 352, 388, 390, 395–396
considerations, 209, 388
encapsulated, 388
polymorphic, 50–51
security, 388

views, 90, 103, 380, 457
Virtual Private Database (VPD), 99–104
VO. See view objects
VPD (Virtual Private Database), 99–104

W

W3C (World Wide Web Consortium),
435, 438

W3C-defined selectors, 435
web browser tools/add-ons, 442–444
Web content, 183
Web Service data set, 352
Web services, 456–457

ADF Services, 456
calling, 465–468
denied access errors, 108
external, 195
external-facing, 107
security, 106–108, 468
SOA composite services, 456–457
testing, 497–503
troubleshooting grants, 108

Web Services Description Language. See WSDL
WebLogic domain

configuring, 206–207
skin deployment, 450–451

WebLogic Scripting Tool (WLST), 23
WebLogic Server

Admin Servers, 4–5, 6
clusters, 5–6
configuring, 206–207
config.xml file, 7
domain directory structure, 7, 8
managed servers, 4, 5
node manager, 6, 7
overview, 4–7

WHERE clauses, 77, 91, 94, 99–104
WinSCP tool, 448
WLST (WebLogic Scripting Tool), 23, 65
workflows, 144, 195–197, 463
World Wide Web Consortium (W3C),

435, 438
WSDL (Web Services Description

Language), 107
WSDL file, 322, 456
WSDL location, 494

X

XHTML documents, 435
XML Feed (HTTP) data set, 353
XML files, 23, 353
XML output, 367–368

16_Index.indd 518 11/11/13 12:23 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

16_Index.indd 519 11/11/13 12:23 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

16_Index.indd 520 11/11/13 12:24 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

16_Index.indd 521 11/11/13 12:24 PM

Oracle-Regular / Oracle Fusion Applications Development and Extensibility Handbook / Ajvaz / 369-3

16_Index.indd 522 11/11/13 12:24 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

D
ow

nloaded by [H
acettepe U

niversity 85.240.126.137] at [05/04/16]. C
opyright ©

 M
cG

raw
-H

ill G
lobal E

ducation H
oldings, L

L
C

. N
ot to be redistributed or m

odified in any w
ay w

ithout perm
ission.

	Cover
	About the Authors
	About the Technical Editor

	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	What the Book Covers
	Chapter 1: Introduction to Technical Architecture
	Chapter 2: Introduction to Customization
	Chapter 3: Flexfields in Oracle Fusion Applications
	Chapter 4: Security in Fusion Applications
	Chapter 5: Run-time Customization with Oracle Page Composer
	Chapter 6: Extending CRM with Oracle Application Composer
	Chapter 7: Customizing with Oracle JDeveloper
	Chapter 8: Building a New User Interface with ADF
	Chapter 9: Business Process Management (BPM) in Fusion Applications
	Chapter 10: Run-time and Design-time Customizations of SOA Components in Fusion Applications
	Chapter 11: Reports
	Chapter 12: Analytics in Fusion Applications
	Chapter 13: Enterprise Scheduler Jobs and Processing
	Chapter 14: Custom Look and Feel with ADF Skinning
	Chapter 15: Integration with Fusion Applications

	Intended Audience

	Chapter 1: Introduction to Technical Architecture
	Technical Architecture Overview
	Fusion Middleware Components
	Oracle WebLogic Server

	Fusion Applications Product Families
	Fusion Middleware Infrastructure Components for Fusion Applications
	Oracle Fusion Middleware Extensions for Applications
	Oracle Enterprise Scheduler (ESS)
	Oracle Enterprise Crawl and Search Framework (ECSF)

	Oracle Database and Oracle Essbase
	Enterprise Manager Controls (Administration Tools)
	Summary

	Chapter 2: Introduction to Customization
	Understanding Types of Customization
	Personalization
	Run-Time Customization
	Application Extensions
	Design-Time Customization and Extensions
	Other Customizations

	Understanding Customization Run-Time Behavior
	Metadata Services Repository
	Customization Layers

	Understanding Customization Management
	Using Sandbox
	Development Lifecycle
	Using Customization Manager

	Summary

	Chapter 3: Flexfields in Oracle Fusion Applications
	Descriptive Flexfields
	Example of Configuring Descriptive Flexfields

	Extensible Flexfields
	Example of Configuring Extensible Flexfields

	Key Flexfields
	Cross-Validation Rules

	Deployment of Flexfields
	Summary

	Chapter 4: Security in Fusion Applications
	High-Level Overview of Technology Components
	Oracle Internet Directory
	Oracle Identity Manager
	Authorization Policy Manager (APM)
	Oracle Platform Security Services

	Role-Based Access Control (RBAC)
	Role Hierarchy

	Authentication in Fusion Applications
	Authorization in Fusion Applications
	Function Security
	Data Security

	Use Cases and Reference Implementation
	Creating a Super User in Fusion Applications
	APM Components
	Auto Provisioning of Roles in HCM

	Mapping to Oracle EBusiness Suite Components
	Web Services Security in Fusion Applications
	External-facing Web Services
	Troubleshooting Web Services Grants

	Summary

	Chapter 5: Run-time Customization with Oracle Page Composer
	What Can Be Customized
	Customization Modes
	User Personalization
	Implicit Personalization
	Composer Personalization

	How to Change Page Layout
	How to Add New Content on a Page
	How to Customize Fields
	How to Use Select Mode to Customize Fields
	How to Use Source View Mode to Customize Fields

	How to Customize Regions
	How to Customize the Task Pane
	How to Reset Customization
	How to Customize the Navigator Menu
	Summary

	Chapter 6: Extending CRM with Oracle Application Composer
	Application Composer Overview
	Understanding Object Structure in Application Composer
	How to Add a New Field to an Object
	How to Add a New Field to an Object Page
	How to Define Server Scripts for an Object
	Understanding Expression Builder
	Calculate a Formula Field’s Value
	Calculate the Default Value for a Custom Field
	Make a Custom Field Conditionally Required
	Make a Custom Field Conditionally Updateable
	Define a Validation Rule for a Field
	Define a Validation Rule for an Object
	Reusable Code for Object Functions
	Utility Code in Global Functions
	Programmatically Access View Objects in Scripting
	Define Triggers to Extend Default Processing for Object

	How to Define Buttons and Links on Object Pages
	How to Define a Saved Search for an Object
	How to Define a Top-Level Custom Object
	How to Define Relationships Between Objects
	How to Define a Custom Child Object
	How to Define Subtab Content
	How to Define Tree Node Content
	How to Secure Custom Objects
	How to Define E-Mail Templates
	How to Define Object Workflow
	How to Define Business Processes
	How to Debug Server Scripts
	How to Extend Import and Export
	Summary

	Chapter 7: Customizing with Oracle JDeveloper
	How to Set Up a Development Environment
	How to Determine Application Artifacts for Customization
	How to Customize Existing Business Components
	How to Modify LOV
	How to Add New Validation

	How to Customize Existing Application Pages
	How to Customize Search
	How to Add a New Attribute to a Page

	How to Deploy JDeveloper Customizations
	Summary

	Chapter 8: Building a New User Interface with ADF
	How to Create a New Custom Application
	Plan Your Application
	How to Define a New Schema
	How to Define New Business Components
	How to Implement Business Logic
	How to Define the Application Navigation Flow
	How to Define Application Pages
	How to Integrate with UI Shell
	How to Secure the Application
	Enable Security
	Add Permissions

	How to Deploy and Integrate with Fusion Applications
	Summary

	Chapter 9: Business Process Management (BPM) in Fusion Applications
	Oracle BPM in Fusion Applications: Architecture and Tools Overview
	BPMN Component Run-time Environment
	BPMN Design Tools

	Example of BPM Process Customization Based on an Existing Template in Process Composer
	Summary

	Chapter 10: Run-time and Design-time Customizations of SOA Components in Fusion Applications
	Typical Interaction Patterns with SOA Composites in Fusion Applications
	An Example: Introducing General Ledger Journal Approvals

	Run-time SOA Component Customizations
	Approvals Management, Configuration, and Assignment Rules in Fusion Applications

	Design-time Customizations
	Setting Up JDeveloper to Customize and Extend SOA Composites
	An Example of Extending and Customizing SOA Components

	Summary

	Chapter 11: Reports
	BI Publisher Report Architecture in Fusion Applications
	Data Model
	Template
	Report Output

	BI Publisher Report Example
	System Variables in BI Publisher for Fusion Applications
	Customizing the BI Publisher Layout Templates

	Further Information on Reporting in Fusion Applications
	Other Reporting Techniques in Fusion Applications

	Summary

	Chapter 12: Analytics in Fusion Applications
	OTBI Architecture and Concepts
	Introduction to OBIEE
	Leveraging OBIEE in Fusion Applications

	OTBI Examples and Guidelines
	A Simple Analysis Report with Graph
	Importing Custom Objects into OBIEE for OTBI Reporting
	Joining Two Subject Areas into a Single Report
	Steps for Including Flexfields in OTBI

	Summary

	Chapter 13: Enterprise Scheduler Jobs and Processing
	Enterprise Scheduler in Fusion Applications
	Overview of ESS for System Administrators
	Overview of ESS for Fusion Applications Developers

	Custom ESS Job Worked Example
	Creating a Custom Application
	Configuring Metadata Security for a Custom ESS Job
	Creating a Custom PL/SQL ESS Job

	Summary

	Chapter 14: Custom Look and Feel with ADF Skinning
	Introduction to ADF Skinning
	A Very Brief Overview of Cascading Style Sheets (CSS)
	About ADF Faces Skinning

	Skinning Tools and Important Resources
	ADF Skin Editor and an Extension for Fusion Applications
	Reference Documentation, Browser Tools, and Other Resources

	Deploying and Setting Up a Custom Skin in Fusion Applications
	Creating and Deploying a Custom Skin Example

	Summary

	Chapter 15: Integration with Fusion Applications
	What Is Oracle Enterprise Repository (OER)?
	What Are the Different Types of Assets in OER?
	Web Services
	Business Events
	Scheduled Processes
	Tables and Views
	Data Model Diagrams

	How to Discover Integration Assets in OER
	Outbound Integration Patterns with Fusion Applications
	Object Workflow
	Business Events
	Bulk Export

	Inbound Integration Patterns with Fusion Applications
	Calling Web Services
	Bulk Import
	File Import

	An Example Integration Using Standard Patterns
	Define a Connection to MDS Repository to Find an Event Definition
	Define a New SOA Composite Application and Subscribe to Events
	Create a BPEL Process and Route the Event to the Process
	Deploy to Application Server and Test Event Subscription
	Build BPEL Flow to Process Location Data
	Deploy the SOA Composite with Concrete Service URL
	Test the Complete Integration Flow

	How to Test Fusion Applications Web Services
	How to Change the User in SOA Composite to Call Services
	Using a Hard-Coded Username and Password
	Using Keystore Configuration

	Summary

	Index

